如图,直线y=-2分之一x 2交坐标轴

来源:学生作业帮助网 编辑:作业帮 时间:2021/01/16 11:01:49
如图直线y=-x+3交x轴于B,交y于C,顶点为E的抛物线y=-x2+bx+c经过BC两点,与x轴的另一个交点为A

(1)直线y=-x+3交x轴于B,交y于C易知B(3,0),C(0,3)将B,C两点坐标代入y=-x2+bx+c得c=3,-9+3b+3=0,b=2∴抛物线解析式为y=-x²+2x+3(2)

如图抛物线y=2分之1x2-x+a与x轴交于AB两点,其顶点在直线y=-2x上.(1)求a的值.(2)求AB两点的坐标.

1)抛物线y=1/2x²-x+a的顶点坐标为[1,1/2(2a-1)]顶点在直线y=-2x则1/2(2a-1)=-2*12a-1=-4a=-3/22)抛物线的解析式;y=1/2x²

如图,直线y=kx(k>0)与双曲线y=2/x交于A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值等于

将A点代入直线方程:Y1=K*X1——(1)B点代入:Y2=K*X2——(2)因为:K>0,X≠0  所以(1)/(2)得:Y1*X2=X1*Y2由于直线通过原点,双曲线原点对称:就有:X2=-X1那

如图,直线y=kx(k>0)与双曲线y=4x交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1的值等于

由题意知,直线y=kx(k>0)过原点和一、三象限,且与双曲线y=4x交于两点,则这两点关于原点对称,∴x1=-x2,y1=-y2,又∵点A点B在双曲线y=4x上,∴x1×y1=4,x2×y2=4,∵

如图 抛物线y=-x2+2x+3与x轴交于A,B 两点,与 y轴交于点C,对称轴与抛物线交于点P,与直线BC 交于点M,

(1).y=-x²+2x+3=-(x²-2x)+3=-[(x-1)²-1]+3=-(x-1)²+4对称轴:x=1;顶点P(1,4);C(0,3);A(-1,0)

如图,抛物线y=12x2-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上.

(1)∵y=12x2-x+a=12(x-1)2+a-12,∴抛物线的顶点坐标为(1,a-12),∵顶点在直线y=-2x上,∴a-12=-2×1,∴a=-32,∴抛物线的解析式为y=12x2-x-32,

如图1,已知直线y=kx与抛物线y=-4 27 x2+22 3 交于点A(3,6). (1)求直线y=kx的解析式和线段

(1)把点A(3,6)代入y=kx得;∵6=3k,∴k=2,∴y=2x.OA=3倍根号5(2)QM分之QN是一个定值,理由如下:如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.①当QH与QM重合

如图已知抛物线y=3/4x2+bx+c与坐标轴交于A,B,C三点A(-1,0),过点c的直线

(1)(0,-3),b=-,c=-3.(2)由(1),得y=x2-x-3,它与x轴交于A,B两点,得B(4,0).∴OB=4,又∵OC=3,∴BC=5.由题意,得△BHP∽△BOC,∵OC∶OB∶BC

如图,抛物线y=x2-2x-3与x轴交A、B两点

容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=

如图,已知抛物线y= 1 2 x2+bx与直线y=2x交于点O(0,0),A

题不完整,不知是否如下题:如图,已知抛物线y=½x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点

如图,在平面直角坐标系中,直线y=-3x-3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与

(1)直线y=-3x-3与x轴交于点A,与y轴交于点C,可求得A点的坐标为(-1,0)、C点的坐标为(0,-3),把A、C两点坐标值代入y=x^2+bx+c,解得b=-2,c=-3,所以抛物线的解析式

如图,过抛物线x2=4y焦点的直线依次交抛物线与圆x2+(y-1)2=1于点A、B、C、D,则|AB|×|CD|的值是(

方法一:特殊化,抛物线x2=4y的焦点是F(0,1),取过焦点的直线y=1,依次交抛物线与圆x2+(y-1)2=1的点是A(-2,1)、B(-1,1)、C(1,1)、D(2,1),∴|AB|×|CD|

如图7,直线y=kx(k>0)与双曲线y=4/x交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1=

设(x1,y1)是第一象限交点那么(x2,y2)则是第三象限的交点,则有x2,y2

如图已知直线y=kx+b与抛物线y=x2^交与P,Q两点,p横坐标为2且与x轴交与M(2,0)求直线y=kx+b表达

1、因为P在抛物线y=x²上,且横坐标为-2所以P的坐标(-2,4)P(-2,4),M(2,0)代入直线方程y=kx+b-2k+b=42k+b=0解得k=-1,b=2所以直线为y=-x+22

已知,如图,抛物线y=-3/4x2+3与x轴交于点A,点B,与直线y=-3/4x+b相交于点B,点C,直线y=-3/4x

(1)把y=0代入y=-3/4x^+3中解得A(-2,0)B(2,0)把B的坐标代入y=-3/4+b中得y=-3/4+3/2(2)∵C点是抛物线和一次函数的交点∴-3/4x^+3=-3/4+3/2又∵

(2014•东昌府区模拟)如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为

∵抛物线y=x2与直线y=x交于A点,∴x2=x,解得:x1=1,x2=0(舍去),∴A(1,1),∴抛物线解析式为:y=(x-1)2+1,故选:C.

(2014•松北区一模)如图,抛物线y=-x2+bx+c与直线y=12x+2交于C、D两点,其中点C在y轴上,点D的坐标

(1)在直线解析式y=12x+2中,令x=0,得y=2,∴C(0,2).∵点C(0,2)、D(3,72)在抛物线y=-x2+bx+c上,∴c=2−9+3b+c=72,解得b=72c=2.∴抛物线的解析

如图,已知抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,-3),对称轴是直线x=

(1)对称轴x=-b/(2a)=-b/2=1=>b=-2=>y=x^2-2x+c过C(0,-3),则-3=c,∴解析式为y=x^2-2x-3(2)易求得A,B,C三点坐标为A(-1,0),B(3,0)

如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2

容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=再问:能说的详细点吗==初三的学