已知如图ABCD是菱形过AB的中点E作EF垂直AC于点M

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/16 04:51:24
已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于

1)连接BD,由菱形性质得BD⊥AC,∴BD‖ME,则易证△AME∽△ADB,∴AM:AD=AE:AB=1/2,∴M是AD中点,即AM=DM2)在△MDF与△MAE中,∠FMD=∠EMA,MD=MA,

如图,过菱形ABCD的顶点C,在菱形外作直线EF,与AB,AD边的延长线交于E,F,已知BE=2,DF=1,求菱形ABC

设变长a因为BC∥AF所以BC/AF=BE/AEa/a+1=2/2+aa=根号2

已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.

(1)证明:∵四边形ABCD是菱形,∴∠BAC=∠DAC.又∵EF⊥AC,∴AC是EM的垂直平分线,∴AE=AM,∵AE=AM=12AB=12AD,∴AM=DM.(2)∵AB∥CD,∴∠AEM=∠F.

已知如图四边形ABCD是菱形,过AB的中点E作EF垂直AC于点M,交AD于点F求证:AF=DF

在菱形ABCD中,AC垂直于BD.因为EF垂直于AC,所以EF平行于BD所以三角形AEF相似于三角形ABD所以AE与AB的比值等于AF与AD的比值所以AF等于DF

已知如图四边形abcd是菱形,过AB的中点E作EF垂直AC与点M,交AD于点F求证:AF=DF

因为BD与AC垂直EF也与AC垂直所以EF平行于BD因为E是AB中点所以F是AD中点所以AF=DF

1如图,已知四边形ABCD是菱形,点E,F分别是CD,AD的中点,求证AE=CF 2已知菱形ABCD中,BD是对角线,过

1、∵DA=DCDF=1/2ADDE=1/2DC∴DF=DE∵∠D=∠D∴⊿ADE≌⊿CDF∴AE=CF2、∵∠E=90°BD=2DE∴∠ABD=30°∵AB=AD=8∴∠ABD=∠ADB=30°∴∠

已知:如图矩形ABCD中,AB=2,BC=4,E、F在BC、AD上,且四边形AECF是菱形.求菱形AECF的面积

设CE=x,则BE=4-x∵四边形ABCD是矩形∴ΔABE是直角三角形∵四边形AECF是菱形∴AE=EC由勾股定理得;AB²+BE²=AE²=CE²即2

已知,如图,四边形ABCD是菱形

(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1

已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于 0 - 解决时间:2

BD⊥ACEF⊥AC∴EF‖BDEM是⊿ABD的中位线,AM=DM,∠A=∠ADF⊿AEM≌⊿DFM(ASA).AE=DF=2.菱形ABCD的周长=8AE=16.

已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F. (1)求证:AM

证明:连接BD,则:BD⊥AC,所以:EF‖BD(垂直同一条直线的两条直线平行)而:BE‖DF所以:四边形EBDF是平行四边形所以:FD=EB而AE=BE所以:AE=DF由于:AE‖DF所以:∠F=∠

已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.

(1)证明连接BD,∵四边形ABCD是菱形, ∴AC⊥BD,又∵EF⊥AC,∴ME∥BD,∴AM/AB=AM/AD∵E为AB的中点,∴M为AD的中点, ∴AM=DM; &

已知:如图,四边形ABCD 是菱形,过AB的中点E作AC的垂线 EF,交AD于点M,交CD的延长线

(1)证明:∵四边形ABCD是菱形,∴∠BAC=∠DAC.又∵EF⊥AC,∴AE=AM=12AB=12AD,∴AM=DM.(2)AB∥CD,∴∠AEM=∠F.又∠FMD=∠AME,△DFM是等腰三角形

已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AC于点N,交AD于点M,交CD的延长线于点F.

连接BD,因为ABCD是菱形,对角线垂直,EF平行BD,E是AB的中点,所以M是AD的中点,AM=DMDF=AE=2所以菱形ABCD的周长=16

如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交点CD的延长线于点F

证明步骤太难写了~我就给你点提示吧~你连接对角线AC垂直于BD可以证明AE=DF=边长的一半...然后用相似三角形的原理证明AM=DMDF=2然后边长是4周长是16不懂在线帮你回答~再问:这个。。。我

已知如图四边形abcd是菱形过ab的中点e作ef⊥ac于点m 交ad于点f 求证af=df

证明:四边形abcd是菱形,ac是对角线.所以角DAC=角BACef⊥ac.所以角AMF=角AME=90度AM=AM所以三角形amf全等于三角形ame(asa)所以AF=AEab的中点e所以F是AB的

已知,如图四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F,垂足为O.

证明:(1)连接BD,∵四边形ABCD是菱形,∴AO平分∠BAD,AC⊥BD,∵EF⊥AC,点E是AB中点,∴EM是△ABD的中位线,∴M是AD的中点;(2)在△AME和△DMF中,∵∠EAM=∠FD

已知如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AE=2.

因为DE⊥AE,且AE=2,AE=EB所以:在直角△AED中,AE=2,AD=4,所以:∠ADE=30°所以:∠DAB=60°所以:∠ABC=120°由棱形的性质知:∠AOB=90°,∠OAB=∠OA

已知如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AB=2.

因为菱形ABCDE是AB中点所以△DAE≌△DEB△ADE≌△DEB所以DB=DA=AB所以等边三角形DAB所以∠DBA=60因为菱形ABCD所以△DAB≌△DBC所以∠DBC=∠DBA=60所以∠A

已知:如图,在菱形ABCD中,过AB的中点E作EF⊥AC,交AD于点M,交CD的延长线于点F.

(1)证三角形AEM全等三角形DEF,得,AM=DF,因EM//BD,MB//DF,所以四边形FDBM是平行四边形,所以MB=DF,所以AM=MB,即M是AB中点(2)因AD=2DF=4,所以菱形AB

如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.

(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠1=90°,∵E、F分别是BC、AD的中点,∴AF=