已知x服从泊松分布的矩估计

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/10 20:25:54
X服从泊松分布,求1/(X+1)的期望,怎么算?

P{X=k}=e^(-a)a^(k)/k!1=sum_{k=0->正无穷}P{X=k}=sum_{k=0->正无穷}e^(-a)a^(k)/k!E{1/(X+1)}=sum_{k=0->正无穷}e^(

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y仍服从泊松分布,参数为6

这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y服从泊松分布,参数为6

要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[

设总体X服从参数为λ的泊松分布,其中λ为未知参数.X1,X2,...,Xn为来自该总体的一个样本,则参数λ的矩估计量为?

X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.

X服从泊松分布求E[X(X-1)]

设X服从泊松分布,参数为λ,那么EX=λ,DX=λ,所以E[X(X-1)]=E(X^2)-EX=DX+(EX)^2-EX=λ+λ^2-λ=λ^2.也可以直接根据定义E[X(X-1)]=sum(n(n-

已知X服从泊松分布,求X的特征函数.

很简单啊.特征函数E(exp(itx)),其中x服从泊松分布,于是(我中间都是乘起来的,没写乘号而已)E(exp(itx))=sum(k从0到无穷)exp(itk)exp(-lambda)lambda

设总体X服从泊松分布 P(λ),X1,X2,…,Xn为取自X的一组简单随机样本,求λ的极大似然估计

x的平均值这个打不出来啊,大概思想是求出似然函数,就是n个泊松概率函数求积,然后取对数,就是ln(n个泊松概率函数求积),之后对λ求导,让得出来的式子等于零.再问:过程!!结果我知道

X服从正态分布,X的平方服从什么分布

X服从正态分布,则X的平方服从卡方分布.

已知离散型随机变量X服从参数为3的泊松分布,则概率P{X=0}=?

你是不明白分母的那个k!0!的值在数学上通常是约定为1的,因此代入公式后的答案是P{X=0}=e^-3.

设随机变量X服从参数为λ的泊松分布,且已知P{X=1}=P{X=2},求P{X=4}.

P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2λ=λ^2/2λ=2P{X=4}=2^4*e^-2/4!=2e^-2/3

概率统计:已知随机变量X服从自由度为3的t分布,则X的平方服从什么分布?

楼上真是扯淡啊.明显是F分布,而且是F(1,3).关于F分布你百度百科查一下就知道了.而t分布的话,比如自由度是3,他的分子是正态分布,分母是根号下的Y除以自由度3,其中Y是服从卡方分布的随机变量.所

设总体X服从参数为λ的普阿松分布(泊松分布),它的分布律为:

首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取

2、设随机变量X服从参数 的泊松分布( 入>0)且已知E[(x-2)(X-3)]=2,求入的值.

由泊松分布知道E(x)=D(x=)λ,则可知E[(x-2)(X-3)]=E(x^2-5x+6)=E(x^2)-5E(x)+6=D(x)+(E(x))^2-5E(x)+6=λ+λ^2-5λ+6=2即λ^

已知随机变量x服从参数为2的泊松分布则E(X2)=

因为$X\simP(2)$,所以,$\E{X}=2$,$\Var{X}=2$.所以$\E{X^2}=\Var{X}+\E{X}^2=2+2^2=6$,建议好好看看书上的随机变量数字特征这一章,因为$\

设总体x服从二项分布B(N,P),其中N已知,试求参数p的矩估计量和极大似然估计量

E[X]=NP;Var[X]=NP(1-P);矩估计:总体的一阶原点矩为E[X]=NP;样本的一阶原点矩为_X,用样本估计总体,有^p=_X/N;极大似然估计:^p=_X/N;

随机变量X,Y相互独立,分别服从参数为a,b的泊松分布,证明X+Y服从参数为a+b的泊松分布.

π(a)π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k,Y=m

设X服从参数为λ的泊松分布,试求参数λ的矩估计与极大似然估计

所谓估计就是用样本的值来近似代替总体中未知参数的值,所以:既然λ的似然估计是X的均值,那它平方是的似然估计就是样本均值的平方.极大似然估计

如何证明两个服从泊松分布的变量相加之后仍然服从泊松分布?

π(λ)P{X=k}=λ^k*e^(-λ)/k!π(μ)P{Y=k}=μ^k*e^(-μ)/k!Z=X+YP{Z=k}=∑(i=0,...k)P{X=i}*P{Y=k-i}=∑(i=0,...k)[λ