在三棱锥s abc中,sa,sb,sc,两两垂直,则角bac可以等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:05:06
如图所示,已知在三棱锥S-ABC中,侧棱SA=SB=SC,又∠ABC=90°.求证:平面ABC⊥平面ASC.

取AC中点D.连接SD.BD求证:∠SDA是90°(明白?)证明:∵D是AC的中点∠ABC是90°∴AD=DC=DB又∵SA=SB∴▷SAD全等于▷SBD又∵SA=SC.D是A

在三棱锥S-ABC中,AB⊥SC,AC⊥SB求证BC⊥SA 在三棱锥S-ABC中,AB⊥SC,AC⊥SB求证BC⊥SA

这个题目做过N次了过S作SD垂直于底面ABC,连接CD并延长交AB于E,连接BD并延长交AC于F由AB⊥SC,AC⊥SB,及三垂线定理可知,D为三角形ABC的垂心,连接AD并延长交BC于G,从而AD垂

在三棱锥S—ABC中,SA=3,SB=4,SC=4,且SA,SB,SC两两垂直,则点S到平面ABC的距离为

以点s为原点,SA为x轴,SB为y轴,SC为z轴建立空间直角坐标系.所以S(0,0,0),A(3,0,0),B(0,4,0),C(0,0,4).然后你假设有向量&={x,y,z}垂直于向量AB和向量A

在三棱锥S-ABC中 s为三角形ABC外一点 sA垂直SB SB垂直SC SC垂直SA H是三角形ABC的垂心 求SH垂

∵SC⊥SA,SC⊥SB,SA∩SB=S,∴SC⊥平面SAB,∵AB∈平面SAB,∴SC⊥AB,连结CH,延长交AB于D,∵H是△ABC垂心,∴CD⊥AB,SC∩CD=C,∴AB⊥平面SDC,SH∈平

在正三棱锥S-ABC中,M,N分别是SC,SB的中点,且MN⊥AM,若侧棱SA=2√3,

(转载)方法一:不用太复杂,教你一个简单办法!因为是正三棱锥,所以SB垂直AC.MN平行SB,所以SB垂直AM.所以SB垂直面SAC.同理,由正三棱锥的对称性可知,SA垂直面SBC,SC垂直面SAB.

在空间四边形SABC中,SA,SB,SC两两垂直,SA=SB=sc=2,那么的四面体外接球表面积为多少

直角三棱锥的外接球半径公式是R=1/2(根号(三条棱的平方和))也就是R=根号(2平方+2平方+2平方)÷2=根号3.表面积为4πR平方=12π

如图在空间四边形SABC中,∠ASC=90°,∠ASB=∠BSC=60°,SA=SB=SC, (1)求证:平面ASC⊥平

(1)取AC中点H,连接SH,BH∵SA=SB=SC且∠ASB=∠BSC=60°∴△SAB全等△SBC,△SAC全等△ABC∴AB=BC且∠ABC=90°∴SH⊥AC,BH⊥AC∴∠SHB为二面角S-

在正三棱锥S-ABC中,SA=SB=SC=AB=BC=AC

(1)过S作SO⊥面ABC,垂足为O.则O为底面的中心.∴AO⊥BC,又SO⊥BC,∴SA⊥BC.(2)设BC的中点D,连结SD,AD,则角ADS为二面角的平面角.设SA=1,△ADS中,SA=1,A

正三棱锥SABC中,若侧棱SA=四倍根号三,高SO=4,则此正三棱锥SABC外接球的表面积是多少?

AO等于4√2,设半径为r,则有r^2=(4-r)^2+(4√2)^2,可以解出r,面积S=4*π*r^2

在三棱锥S-ABC中,侧棱SA,SB SC 两两垂直,且SC=1 SA+SB=4设侧棱SA=x,三棱柱的体积V=f(x)

(4-x)x/6我们不防把SAB设为底面,则SC垂直底面,即它是高,且为1而SA⊥SB,所以底面面积为:x(4-x)/2三棱锥的体积=底面积*高/3你给的是三棱锥,没三棱柱.

三棱锥S-ABC中,侧棱SA,SB,SC两两互相垂直,且SC=1.SA+SB=4

【1】SA=x,则:SB=4-x,则:V=(1/3)[三角形SAB的面积]×[SC]=(1/3)x(4-x)(0

在三棱锥S-ABC中,侧棱SA ,SB,SC两两垂直且长度为a,则三棱锥S-ABC中的外接球的表面面积为

SA、SB、SC两两垂直,可把SA、SB、SC看成一个长方体的三条边,把长方体补全,由对称性长方体的8个顶点都在外接球上,球直径是长方体角线的长度,由勾股定理有直径d^2=4^2+2^2+2^2=24

在三棱锥s-abc中,三角形abc是边长为4的正三角形,sa=sc,证明ac⊥sb

S在面abc内的投影是正三角形的中心O,做辅助线SO.AO.BO.CO用三垂线定理即可证明.

如图在四面体SABC中,SA=SB=SC,角ASC=90°角ASB=角BSC=60°,求证,面ASC⊥面ABC

取AC中点E,连结SE、BE,SA=SC,〈ASC=90度,三角形ASC是等腰直角三角形,∴SE⊥AC,又〈ASB=〈BSC=60度,SA=SB=SC,△SAB和△SBC均是正△,AB=SB=SA,B

在空间四边形SABC中,SA⊥面ABC,∠ABC=90°,AN⊥SB于N,AM⊥SC于M.求证AN⊥BC;SC⊥面ANM

∵SA⊥面ABCBC∈平面ABC∴SA⊥BC∵∠ABC=90°∴AB⊥BC∵SA∈平面SABAB∈平面SAB∴BC⊥平面SAB∵AN∈平面SAB∴AN⊥BC∵AN⊥BCAN⊥SBBC∈平面SBCSB∈

在直三棱锥S-ABC中(SA,SB,SC两两互相垂直),若S在底面上的射影为H

连接CH,交AB于D,连接SD∵SA,SB,SC两两互相垂直∴H为△ABC的垂心,SC垂直于SD,SH垂直于CD=>Rt△SDC∽Rt△HDS=>SD/DH=DC/SD=>SD^2=DH*DC两边同乘

四面体SABC中,SA,SB,SC两两垂直,S0,S1,S2,S3分别表示ΔABC,ΔSBC,ΔSCA,ΔSAB的面

过S点做SD⊥BC交BC于点D,连接AD,∵SA⊥SC,SA⊥SB,∴SA⊥平面SBC,SA⊥BC,又SD⊥BC∴BC⊥平面SAD,有AD⊥BC,又SC⊥SB,SA⊥SD有S0^2=AD^2*BC^2

一个三棱锥SABC三条侧棱SA、SB、SC两两互相垂直,且长度分别为1,根6,3,则这个三棱锥的外接球表面积为

补全三棱锥成一个直棱柱.三条棱长为SA,SB,SC的长.底面是矩形.这个直棱柱的中心就是棱锥的外接圆心,可求得R=2其他直接求出.