设z=f(2x-y) g(x,xy),其中f(t)二阶可导

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/22 06:39:13
设函数f(x,y,z)=yz^2 e^x,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则函数f(x,y,

df(x,y,z)/dx=[d(z^2)/dx]*y*e^x+y*z^2*(de^x/dx)=2zye^x(dz/dx)+y*z^2*e^x另,由x+y+z+xyz=0求dz/dx两边对x求偏导1+0

1、设f可微,写出由方程f ( xy,yz,x-z ) = 0所确定的函数z = g (x,y)的偏导数Z'x和Z'y

df/dx=f'(xy,yz,x-z)(y+y*dz/dx+1-dz/dx)=0(1-y)dz/dx=f'(xy,yz,x-z)*(y+1)dz/dx=f'(xy,yz,x-z)*(y+1)/(1-y

设函数f与g均可微,z=f(xy,lnx+g(xy)),则x*z关于x的微分-y*z关于y的微分=

设u=xy,v=lnx+g(xy),则x(∂z/∂x)-y(∂z/∂y)=∂f/∂v.原因如下:dz=(∂f/

设z=f(x,y)是由方程x=y+g(y)确定的二次可微函数,求z对x求偏导.

∂z/∂x=(∂f/∂x)+(∂f/∂y)(dy/dx)//:g(y)+y=xg'(y)y'+y'=1y'=1/[1+g'(y)

设G(x+z*y^(-1),y+z*x^(-1))=0确定了z=f(x,y)证明:x*z对x的偏导数+y*z对y的偏导数

G[x+z*y^(-1),y+z*x^(-1)]=0证明x*∂z/∂x+y*∂z/∂y=z-xy?Gz=(1/y)G1+(1/x)G2=LGx=G1-(

设z=f(2x-y)+g(x,xy),其中函数f二阶可导,g具有二阶连续偏导数,求a^2z/axay (a就是那个偏导符

dz/dx(用d表示偏导符号)=f'(2x-y)*2+g'1(x,xy)*1+g'2(x,xy)*y=2f'(2x-y)+g'1(x,xy)+y*g'2(x,xy)=2f'(2x-y)+g'1+yg'

设函数f可微,z=f(ye^x,x/(y^2)) 求z/x,z/y

两边对x求导1-a*δz/δx=f'(y-bz)*(-bδz/δx)整理得:[a-bf'(y-bz)]δz/δx=-1两边对y求导-a*δz/δy=f'(y-bz)*(1-bδz/δy)整理得:[-a

设f(x,y,z)=x.arcsiny+yz^2+zx^2,求f(xz),f(yz),f(zz)

由于f'(x)=arcsiny+2xz则f“(xz)=2x;同理,f'(y)=x/√(1-y²)+z²则f"(yz)=2z;f'(z)=2yz+x²则f"(zz)=2y

f(x,y,z)=0,z=g(x,y),求dy/dx,dz/dx

三个变量,两个方程,所以任何一个变量都能表示其余两个变量,偏微分可以写成微分 对f求x的偏微分,=>其中fi分别是f对第i个未知数的偏导数对g求x的偏微分,=>

◆高数 多元函数微分学 证明 "设x = x(y, z),y = y(x, z),z = z(x, y)都是由方程F(x

再问:是否还能给出一种利用题目所给的条件(关于x,y,z的函数)去证明的方法吗?再答:这就是课本上隐函数求导公式的应用,你想得太多了,没有必要的!

设函数z=1/xf(xy)+yg(x+y),其中f,g二次可导,求偏导数 就是求a^2z/axay

传了张图片,不怎么清楚,凑合一下思路就是按照多元复合函数求导来一步一步求解.有问题再追问.先打这么多了. 答案是a^2z/axay=y*f ''(xy)+g'

设z=y/(f(x^2-y^2)),其中f为可导函数,验证

∂z/∂x=-((∂f/∂x)*y*2x)/f^2∂z/∂y=1/f+2y2*(∂f/∂y)/f^21/

设y=f(x,z),而z是由方程g(x,y,z)=0所确定的x,y的函数,

若z=f(x,y)由方程F(x,y,z)=0确定,则将F(x,y,z)=0两边对x,y求导(x,y视为独立变量,z视为x,y的函数)这个是没有问题的,但此处x,y为两个独立的变量;题1.设y=f(x,

分解因式:f(x,y,z)=x^2(y-z)+y^2(z-x)+z^2(x-y)

=x²(y-z)+y²(z-x)+z²(x-z+z-y)=(y-z)(x²-z²)+(z-x)(y²-z²)=(y-z)(x-z)

设Z=X+Y,其中X,Y满足X+2Y>=0,X-Y

(线性规划)由条件当X=Y=3时有最大值Z=6即得K=3再由X+2Y>=0很容易求得Z最小值-3

设x、y、z为整数,证明:x^4*(y-z)+y^4*(z-x)+z^4*(x-y)/(y+z)^2+(z+x)^2+(

x^4(y-z)+y^4(z-x)+z^4(x-y)=xy(x^3-y^3)+yz(y^3-z^3)+zx(z^3-x^3)=xy(x^3-y^3)+yz(y^3-z^3)-zx[(x^3-y^3)+