设A的K次方等于0(K为正整数),证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/27 20:27:26
设k为正整数,使得根下k的平方-2004k也是一个正整数,求k

令根号下k*k-2004k=m,有:k*k-2004k-m*m=0,解得k=1002+根号下m*m+1002*1002,再令根号下m*m+1002*1002=n,有:n*n-m*m=1002*1002

设A是n阶矩阵,满足A的k次方等于0(k是正整数).求证:E-A可逆,并且(E-A)的-1次方等于E+A+A的2次方+…

由于(E-A)(E+A+A²+...A的k-1次方)=(E+A+A²+...A的k-1次方)-(A+A²+...A的k次方)(注意抵消规律)=E-A的k次方=E-0=E所

设A为n阶方阵,且A^k=0(k为正整数),则( ).

n阶方阵在复数域上有几个特征值呢?一定是n个,因为特征多项式|aE-A|是关于a的n次多项式,必有n个根.总之,计入复根,则A必有n个特征值.接下来如果特征值是a,那么由定义定有AX=aX于是a^kX

设A为n阶方阵,且A的k次幂等于0矩阵,(k为正整数),则() (A)A=0 (B)A有一个不为0的特征值

A的k次幂等于0矩阵指某个正整数kA^k=0设A的特征值λ则:Ax=λx(x≠0为特征向量)A^(k)x=0=λ^(k)x=》λ=0

如果A为非零实对称矩阵,证明 对任意的正整数k,总有A的k次方不等于零

证明:因为实对称矩阵总可对角化所以存在可逆矩阵P满足A=Pdiag(a1,...,an)P^-1由已知A非零,所以r(A)=r(diag(a1,...,an))>0--即有A的非零特征值的个数等于A的

证明题 设方阵A满足A的k次方等於0 对某个正整数k成立 证明:A的特征值一定为0

证明:设λ是A的特征值则λ^k是A^k的特征值(这是定理)而A^k=0,零矩阵的特征值只能是0所以λ^k=0所以λ=0即A的特征值一定为0.

设K为整数,方程kx=4-X的解为正整数,则k的值等于

kx=4-xkx+x=4(k+1)x=4∵4=1*4=4*1=2*2又∵原方程的解为正整数∴就有以下三种可能:1.x=1,k+1=4k=32.x=4,k+1=1k=03.x=2,k+1=2k=1∴当原

已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E-A可逆,并求出E-A的逆矩阵.

因为A^k=0所以(E-A)(E+A+A^2+...+A^(k-1))=E+A+A^2+...+A^(k-1)-A-A^2-...-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-A)^

若A的k次方为零矩阵(k为正整数),求证I-A的逆矩阵等于I+A+A的平方+...+A的k-1次方

(1-A)[1+A+A^2+A^3+...+A^(k-1)]=1+A+A^2+A^3+...+A^(k-1)-(A+A^2+A^3+...+A^k)=II-A的逆矩阵等于I+A+A的平方+...+A的

设矩阵A的K次方等于0矩阵,如何证明E-A可逆,并求E-A的逆

(E--A)(E+A+A^2+A^3+...+A^(n--1))=E+A+A^2+A^3+...+A^(n--1)--A--A^2--A^3--.--A^n=E--A^n=E,因此E-A可逆,且(E-

线性代数题 若A的k次方=0(k为正整数) 证明:E-A的逆矩阵等于E+A+A的平方+.+A的K-1次方

考虑(E-A)(E+A+A^2+A^3+...+A^(K-1))=E+A+A^2+A^(k-1)-A-A^2-A^3-...-A^k=E-A^k=E(因为已知A^k=0)所以E-A的可逆矩阵为E+A+

设A是n阶矩阵,若存在正整数k,使A的k次方为o矩阵,求证矩阵A的特征值为0

设a是A的特征值则a^k是A^k的特征值(定理)而A^k=0,零矩阵的特征值只能是0所以a^k=0所以a=0即A的特征值只能是0.

矩阵A的k次方等于0,则A的秩为多少

这个不一定.根据你给的条件只能说明A的若当型中都是形如的若当块,并且最大的若当块是k阶的,也就是说A的秩最小是k-1多少不一定.

已知16乘17乘18乘19乘.乘98乘99等于a乘10的k次方 其中a ,k均为正整数 求k的最大值

因为这个连乘积=XXXXX……X0000……0末尾肯定有连续的0这些0是从连乘的数中因数2和因数5而来.像20、30的这样,也是因为其本身即含有因数2和因数5.并且明显地,这些数中,因数2的个数要多于

设A为n阶方阵,对其正整数k>1,A^k=0,证明:(E-A)^(-1)=E+A+A^2+,+A^(k-1)

由于(E+A+A^2+,+A^(k-1))(E-A)=(E+A+...+,+A^(k-1))-(A+...+,+A^k)=E-A^k=E(注意那个式子的抵消规律)所以命题成立

线性代数问题设方阵A满足A的k次方幂等于零矩阵,k为正整数.证明I+A可逆,并求(I+A)的逆矩阵

因为(E+A)(E--A+A^2--A^3+.+(--1)^(k--1)A^(k--1))=E+(--1)^(k--1)A^k=E,第一个等号是你按照分配率乘开后发现中间的项全消掉了.因此E+A可逆,

设A为n阶矩阵 存在正整数k 使得A的k次方等于O 证明:A不可逆

根据|AB|=|A||B|得到|A^k|=|A|^k=0所以|A|=0,所以不可逆

已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E+A可逆

设a是A的特征值则a^k是A^k的特征值因为A^k=0,而零矩阵的特征值只能是0所以a^k=0所以a=0.故A的特征值为0,...,0所以A+E的特征值为1,...,1所以|A+E|=1故A+E可逆.

设矩阵A^k=0矩阵(k为正整数),证明(E-A)^(-1)=E+A+A^2+...+A^(k-1)

证明:因为A^k=0所以(E-A)(E+A+A^2+...+A^(k-1))=E+A+A^2+...+A^(k-1)-A-A^2-...-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-

A的K次方等于0为什么A的特征值全为零

A的K次方等于0为什么A的特征值全为零因为除0以外的任何实数的K次方都不等于0