若矩阵A与B相似,则特征值之和等于主对角线值之和

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/23 02:16:29
设矩阵A+=(1 x 0,2 y 0,3 z 1),且矩阵A与矩阵B相似,矩阵B的特征值为1,2,3,则x.y.z各等于

相似矩阵行列式值相等;主对角线元素之和相等[1x0][2y0][3z1]1+y+1=1+2+3;所以y=4;|A|=y-2x=|B|=6;所以x=-1;再计算|E-A|=0;可以算出z

刘老师你好,线性代数,已知矩阵A与B相似,且A的的特征值1,2,3,则B的特征值为?

我把尊敬的刘老师的这个题抢了,呵呵.矩阵A和B相似,且A的特征值1,2,3,则B的特征值也是1,2,3.为增加可信性,请翻阅教材第121页定理3.今天是11.11,祝节日快乐.

设矩阵A与B相似,其中A=[1 2 3,-1 x 2,0 0 1],已知矩阵B的特征值1.2.3则x=

A与B相似,说明A与B有相同的特征值.那么A的特征值为1,2,3.根据A的迹=特征值之和,可以得到等式1+x+1=1+2+3,x=4注:A的迹也就是A的对角线元素之和

刘老师,已知n阶矩阵A与上三角矩阵B=(bij)nxn相似,则A的特征值为?

相似矩阵有相同的特征值.所以A的特征值即B的特征值.又对角阵和上三角阵(或下三角阵)的特征值为对角元素.所以A的特征值为B的对角元素Bii

矩阵A与B相似,

相似矩阵有相同的迹和行列式所以有tr(A)=22+x=1+4=tr(B)得x=-17再计算行列式|A|=22*(-17)-31y=-374-31y|B|=4-6=-2所以-374-31y=-2得y=-

若n阶矩阵A的特征值为0,1,2.n-1,矩阵B与A相似,则|B+E|=

利用特征值可如图得到行列式等于n!.经济数学团队帮你解答,请及时采纳.

关于“若N阶矩阵A与B相似,则A与B的特征值多项式相同”证明的疑问

他说的是特征多项式相等!没有说矩阵相等!你可以看看特征多项式的定义:一个方阵X的特征多项式f(λ)就是|X-λE|.那么命题是完全正确的!您可能有些概念混淆了.首先行列式就是行列式,您在这里说的“行列

一道线性代数选择题:若矩阵A与B的特征值都相同(包括重数)则两矩阵相似吗?

实对称矩阵可正交对角化,正交对角化即与对角矩阵相似由于对角矩阵主对角线上元素都是特征值所以特征值相同的实对称矩阵相似与同一个对角矩阵而相似关系都是等价关系(有传递性)所以实对称矩阵相似的充要条件是特征

若4阶矩阵A与B相似,矩阵A的特征值分别为1/2 1/3 1/4 1/5,则行列式|B*-E|=?

∵A的特征值为:1/2,1/3,1/4,1/5,∴与之相似的B的特征值也为:1/2,1/3,1/4,1/5,∴B^(-1)的特征值为:2,3,4,5.又∵|B|=1/2·1/3·1/4·1/5=1/1

线性代数(同济5版),关于相似矩阵的定理3证明不太懂.若N阶矩阵A与B相似,则A与B的特征值多项式相同

1.行列式的性质:|AB|=|A||B|即乘积的行列式等于行列式的乘积给你个证明:不过你可能没学Laplace展开定理,它是行列式按一行(列)展开定理的推广.所以有|P^(-1)(A-λE)P|=|P

相似矩阵A和B有相同的特征值,特征向量与什么关系?

A与B相似所以存在一个矩阵P使得A=PBP^(-1)设α是A的属于λ的一个特征向量所以Aα=λα将A=PBP^(-1)带入PBP^(-1)α=λα得BP^(-1)α=λP^(-1)α所以x是B的属于λ

线性代数中,如果矩阵A与一对角阵特征值相同,且二重特征值有两个线性无关的特征向量,能否说明A与对角阵相似?若矩阵B与对角

如果矩阵A与一对角阵特征值相同,且二重特征值有两个线性无关的特征向量,能说明A与对角阵相似.若矩阵B与对角阵特征值相等,但是二重特征值只有一个特征向量,说明B与对角阵不相似,B只能化简为约当标准形了.

若A,B是实对称矩阵,则A与B有相同的特征值是A与B相似的充分必要条件.为什么?

相似矩阵有相同的特征值,这是定理反之,因为A,B是实对称矩阵,所以A可对角化,即A,B相似于由特征值构成的同一个对角矩阵,所以A,B相似.

若同阶方阵A与B相似,下面正确的是() A.A与B有相同的特征值和特征向量 B.A与B都相似于一个对角矩阵...

D正确.A不对,相似则特征值相同,但特征向量不一定相同B不对,两个矩阵不一定可对角化C不对,特征矩阵不一定相同只有D对了,若P^-1AP=B,则P^-1(tE-A)P=tE-P^-1AP=tE-B.

若3阶方阵A的特征值为-1,0,1,则矩阵B=A³-A+2E的相似对角矩阵为?

B的特征值,2,2,2再答:所以B的相似为diag(2,2,2)再问:B的特征值怎么算再答:带进去啊再答:A的特征值带入A

相似矩阵必有相同的特征值.若矩阵A 与B 相似,请利用上面性质求x与y

相似矩阵必有相同的特征值,故有相同的行列式与迹.|A|=-2=-2y=|B|tr(A)=2+x=y+1=tr(B)得y=1,x=0.

已知四阶矩A与B相似:矩阵为A的特征值12

∵四阶矩A与B相似,∴A与B具有相同的特征值,即:B的特征值为12,13,14,15,又∵B与B-1的特征值是互为倒数的,∴B-1的特征值为2,3,4,5,从而:B-1-E的特征值为2-1,3-1,4

已知3阶矩阵A的特征值分别为0,-2,3,且矩阵B与A相似,则|B+E|=?

B+E特征值为0+1,-2+1,3+1即:1,-1,4∴|B+E|=1×(-1)×4=-4

若4阶矩阵A与B相似,矩阵A的特征值为-1,1,2,3,则行列式|B2-2B|=______.

由于4阶矩阵A与B相似,因此A与B具有相同的特征值∴B的全部特征值为-1,1,2,3∴B2-2B的全部特征值为(-1)2-2(-1)=3,12-2=-1,22-2•2=0,32-2•3=3∴|B2-2

N阶矩阵A,B相似,若特征向量相同,则对应的特征值是否相同

若矩阵A与B相似则1)|A|=|B|2)|λE-A|=|λE-B|=03)特征值相同4)矩阵的迹相等