已知如图14 三角形ABC内接于圆O AD垂直BC于点的D 弦BH垂直AC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:17:07
已知:如图,三角形ABC内接于⊙O,D为BC弧的中点,AE⊥BC于E,求证AD平分∠OAE

证明:延长AO交弧BC于G,连接BG∵D为BC弧的中点∴∠BAD=∠CAD  即∠BAG+∠GAD=∠DAE+∠EAC∵AE⊥BC∴∠C+∠EAC=90o∵AG为直径∴∠G+∠BA

已知:如图,三角形ABC内接于圆O,D为BS弧的中点,AE垂直BC于E,求证:AD平分角OAE

我也是刚刚做到这道题其实只要连接OD,OA=OD,所以等腰三角形,两角相等又D是弧BC中点,根据垂径定理推论,可知OD所在的直径垂直BC,又AE垂直BC于E,有两个直角,所以平行...接下来会了吧~~

已知:如图 三角形ABC内接于圆O,D、E 在BC边上且BD=CE,弧BF=弧CG,证AB=AC

证明:连接BF、CG因为弧BF=弧CG所以弧BG=弧CF,BF=CG所以∠CBF=∠BCG又因为BD=CE所以△BDF≌△CEG(SAS)所以∠BFA=∠CGA所以AB=AC(同圆中,相等的圆周角所对

已知:如图,三角形ABC内接于圆O,D为弧BC的中点,连接BD.求证:AC比AE等于AD比AB

补充:连结AD交BC于点E证明:∵D是弧BC的中点,∴∠DAC=∠BAD,又∵∠C=∠D,∴△AEC∽△ABD,∴AC/AE=AD/AB,证毕.

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

已知如图三角形abc内接于圆o,ad垂直bc于d,弦bh垂直ac于e,交ad于f 求证:fe=eh

连接AH,∵AD⊥BC,∴∠C+∠EAF=90°,∵BE⊥AC,∴∠H+∠EAH=90°,∵∠C=∠H,∴∠EAF=∠EAH,∵AE=AE,∠AEF=∠AEH=90°,∴ΔAEF≌ΔAEH,∴EF=E

跟相似性有关:如图,已知O为三角形ABC内一点,过点O作EF平行于BC,GH平行于AB,PQ平行于AC,

其实这个好做,利用相似把分母化为一样的:第一题和第二题是一样的做我只做第一题,第二题留给你练手;因为:(相似我就不证明了,我直接说)GF/AC=0F/BC=BH/BCPE/AB=0E/BC=QC/BC

如图 已知矩形DEFG内接于三角形ABC 点D在AB上 点G在AC上 E,F在AB上,AH垂直

设DE=2a则3a/18=﹙6-2a﹚/6解得a=2矩形DEFG的周长=10a=20﹙长度单位﹚

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D

图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点

(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D

如图,已知Rt三角形ABC内接于圆o,AC是圆o直径,D是弧AB的中点,过D作BC的垂线,

解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.

如图,已知三角形ABC内接于圆O,AB=AC=5,BC=8,求圆O的半径长

连A0并延长交BC于M因为;AB=AC弧AB=弧AC又因为;AO过圆心所以;AM垂直并平分BC所以;BM=CM=4又因为;直角三角形BMO所以;B0的平方+MO的平方=0B的平方设半径为X(3-x)*

如图,如图,等边三角形DEF内接于三角形ABC,且DE平行于BC,已知AH垂直于BC于H,交DE与G,BC=4,AH=2

做垂线FI交DE于I设AG长为x,ADE和ABC相似,则DE为2x.因为等边,FI=√3*x,GH=2-x.则√3*x=2-x

已知,如图,三角形abc全等于dcb

图呢?题目不完整再问:正在补再答:

已知,如图,锐角三角形ABC内接于○o

连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠

如图已知,三角形ABC内接于圆o,弦BC所对的劣弧为120度角ABC,角ACB的平分线BD,CE分别交AC于D交AB于E

∵劣弧BC的度数为120°∴∠BAC=60°∴∠ABC+∠ACB=120°∵BD平分∠ABC,CE平分∠ACB∴∠CBD+∠ECB=12(∠ABC+∠ACB)=60°∴∠CFD=60°∴∠BFE=60

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直于bc与f,连接de、

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直bc 连接de df

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行

如图,三角形ABC内接于○O,AB=AC,AO⊥BC于D,

连接AO并延长与圆交与M,连接BM则△ABM相似△ADCAB:DA=AM:ACAB×AC=AM×AD=10×2=20