如图正方形abcd中,ef分别是abbc边上的点

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/01 19:20:43
如图,正方形ABCD中,EF⊥GH,求证:EF=GH.

证明:将GH沿BA方向平移,使G与A重合,将EF沿AD方向平移,使E与D重合,则GH=AN,EF=DM,∵EF⊥GH,∴GH⊥AN,即∠4=90°,∴∠1+∠3=90°,∵四边形ABCD是正方形,∴∠

如图,正方形ABCD中,EF分别是AD.DC的中点,BF,CE相交于点M,求证AM=AB

延长CE,BA,交与Q点.首先三角形QAE与三角形CDE,三角形FCB全等,所以QE=DC=AB,另外由于三角形EDC与三角形FCB全等,所以可以证明出CE垂直于FB,所以角BME为直角,因此AM是直

如图,正方形ABCD中,点E,F分别是BC,DC边上的点,且AE垂直于EF

1:延长EF交正方形外交平分线CP于点P,是判断AE与EP的大小关系,并说明理由\x0d2:在AB边上是否存在有一点M,使得四边形DMEP是平行四边形,若存在,请证明,若不存在,请说明理由各位速度

如图,在正方形abcd—a1b1c1d1中,e.f分别是ad.cd的中点求证ef垂直于bd1

在正方体中平面BB1D1D垂直于平面ABCD,又因为EF在平面ABCD上,所以EF垂直于平面BB1D1D,且BD1在平面BB1D1D上,所以EF垂直于BD1

如图正方形abcd中ef分别是边ad,cd上的点,cf等于de,af与be相交于o,dg垂直af  

(1)由DE=CF及正方形的性质,得出AE=DF,AB=AD,∠BAE=∠ADF=90°,证明△ABE≌△DAF,得出∠ABE=∠DAF,而∠ABE+∠AEB=90°,利用互余关系得出∠AOE=90°

如图,在正方形ABCD中,E,F分别是AD,CD上的点,AE=ED,DF=1/4 DC,连接BE,EF.

因为是正方形,所以AB=BC=CD=ADDF=DC/4=AD/4AE=AD/2=2DF因为AD=AB,所以AB=2DE又因为△ABE=∽△DEF=直角△,所以角EAB=角EDF所以△ABE∽△DEF

如图,正方形ABCD中,EF,MN分别是两组对边所截得的线段,求证:若EF⊥MN,则EF=MN

证明:因为  ABCD是正方形   所以 AB=BC,   角A=角ABC=90度   作BH//EF,  CG//MN 

如图正方形ABCD中,EF MN 分别是两组对边所截取的线段,求证:若EF⊥MN ,则EF=

分别过点E、M向对边作垂线,构成两直角三角形,再证两三角形全等即可

如图,正方形ABCD中,EF,MN,分别是两组对边所截得的线段,求证;若EF垂直MN,则EF等于MN

如图所示:分别过E、M作BC、AB的垂线交于E1、M1,则因MM1=EE1,∠NMM1=∠FEE1,故△MM1N≌EE1F.于是有,EF=MN.证毕.(抱歉,所画图考不上,而且字母的下标也都不承认!)

初中数学:如图正方形ABCD中,EF MN 分别是两组对边所截取的线段,求证:若EF⊥MN , 则EF=

连结an,df,证明三角形and和cfd全等就行,∠c和∠d是直角,∠fdc+∠dfc=90度,∠fdc+∠adf=90度,所以∠dfc=∠adf,ad=cd,两角一边

已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE⊥EF于点E.

很高兴为您解答!分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形

如图,在边长为5的正方形ABCD中,点E,F分别是BC,DC边上的点,且AE⊥EF,BE=2.

,在AB上取BM=BE,连接EM,∵ABCD为正方形,∴AB=BC,∵BE=BM,∴AM=EC,∵∠1=∠2,∠AME=∠ECP=135°,∴△AME≌△ECP,∴AE=EP;(3)存在.顺次连接DM

已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE垂直于EF于点E

(1)AE=EP.证明:设AB=X,BE=Y,则EC=X-Y.作PG垂直BC的延长线于G,易知PG=CG,设∠BAE+∠AEB=90°=∠AEB+∠PEC,则:∠BAE=∠PEC;又∠B=∠PGE=9

如图,正方形ABCD中,E、F分别在BC、CD上,EF=BE+DF.

⑴证明:把⊿ABE绕A逆时针旋转90º,到达⊿ADG∵EF=BE+DFFG=FD+BE∴FG=FE又 AE=AGAF=AF∴ΔAFE≌ΔAFG ﹙SSS﹚∴∠FAE=&#

如图,正方形ABCD中,点E,F分别在AD,BC,上,点G,H分别在AB,CD上,且EF垂直GH求EF/HG

过H作HN垂直AB于N,过E作EM垂直BC于M,EF交MN于O,四边形EDCM和CHNB是矩形,角EMF=角HNG=90度,EM=CD=BC=HN,EM垂直HN,角FEM=90度角EOH=角GHN,三

已知,如图,在正方形ABCD中,点E,F分别在AB上和AD的延长线上,且BE=DF,连接EF,G为EF

(1)证明:∵BE=DF,BC=CD,∠EBC=∠CDF,∴△CEB≌△CFD,∴CE=CF;(2)证明连接AG,CG在Rt△EAF中,∵G是斜边EF的中点,∴AG=GE=GF,又∵△EBC≌△FDC

如图,已知正方形ABCD中,若EF垂直于GH,请说明EF=GH

过点G向AD做垂线,交AD于M;过点E向DC做垂线,交DC于N:EF垂直于GH,AD垂直于DC,则角AHG=角DFE;角GMH=角ENF=90°,角MGH=角NEFEN=GM;三角形MHG全等于三角形

如图,在空间几何体ABCD--EF中,底面ABCD为正方形,EF//AB,EA//EF,AB=2EF,<AED=90.,

看不清图再问:再答:再问:EF//AB再答:��再答:再答:��������

如图,正方形ABCD中,ENFM分别是各边上的点,EF垂直MN,求证MN=EF

证明:设点E在BC上,点N在CD上,点F在DA上,点M在AB上.又设EF与MN的交点为P过点F作FS⊥BC,交BC于点S;过点N作NT⊥AB,交AB于点T.因为∠B=90°,∠MPE=90°所以∠BM