如图所示 光滑圆形管道固定在竖直面内

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/14 03:43:33
如图所示 ,在竖直平面内固定的 圆形绝缘轨道的圆心在O点、半径为r,内壁光滑,A、B两点分别是圆弧的最低

重力和电场力的合力可以看做一个新的“倾斜的”重力C点速度最快,也就是新的“最低点”,对应的D点就是“最高点”,所以如果在B点不受压力的话小球是不可能到达D点的.题中已说了“小球做完整的圆周运动”所以速

24,如图所示,一固定在竖直平面内的光滑的半圆形轨道ABC,其半径R=0.5m,

(1)恰好通过,即向心力就是重力:mg=mv²/Rv=√5m/s(根号5米每秒)(2)根据运动独立性,2R=½gt²t=√5/5s(五分之根号五秒)CD距离x=vt=1m

如图所示,一质量为m的导体棒MN两端分别放在两个固定的光滑圆形导轨上,两导轨平等且间距为L,导轨处在竖直向上的匀强磁场中

那个是立体图,金属棒在导轨内侧,你看成在外侧了.再问:来自于http://www.jyeoo.com/physics2/ques/detail/7017b177-8610-49bc-b5d1-3766

如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是(  )

A、在最高点,由于外管或内管都可以对小球产生弹力作用,当小球的速度等于0时,内管对小球产生弹力,大小为mg,故最小速度为0.故A错误,B正确.C、小球在水平线ab以下管道运动,由于沿半径方向的合力提供

如图所示,一质量为m的导体棒MN两端分别放在两个固定的光滑圆形导轨上,两导轨平等且间距为L,导轨处在竖直向上的匀强磁场中

(1)从右向左看受力分析如图所示:由受力平衡得到:BILmg=tan37°解得:B=3mg4Il即磁场的磁感应强度B的大小为3mg4Il.(2)两个导轨对棒的支持力为2FN,满足:2FNcos37°=

如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,管道内侧壁半径为R,小球半径为r,则下列说法中正确的是(  )

AB、因是在圆形管道内做圆周运动,所以在最高点时,内壁可以给小球沿半径向外的支持力,所以小球通过最高点时的最小速度可以为零.所以选项A错误,B正确.C、小球在水平线ab以下的管道中运动时,竖直向下的重

如图所示,一个固定在竖直平面上的光滑 半圆形管道,管道里有一个直径略小于管道内径的小球,小球在 管道

你好可以换个清楚点的图吗我会给你过程再答:经过0.3s则竖直方向上的速度为V2=gt=3m/s而射到斜面上的时候竖直速度和水平速度与合速度的夹角都为45°所以V1=3m/s平抛中水平速度不变所以到达顶

(2014•抚州模拟)如图所示,内壁光滑半径为R的圆形轨道,固定在竖直平面内.质量为m1的小球静止在轨道最低点,另一质量

(1)设小球m2运动到最低点时的速度为v0,由机械能守恒,得:m2gR=12m2v20…①解得:v0=2gR…②(2)设两球碰撞后,m1、m2两球粘在一起的速度为v,规定向右为正方向,由系统动量守恒定

半径为R的光滑圆形轨道甲固定在一竖直平面内,他的左右侧分别为光滑的

最后能经过运行轨道甲,则至少要求到最高点时,重力提供向心力,即有:mg=mv^2/Rv^2=gR对整个过程进行分析:从A点最后到轨道最高点,势能减少mg3R-mg2R=mgR摩擦力做功W=-2mguL

如图所示,竖直平面内固定一个半径为r的1/4光滑圆形轨道AB,底端B切线方向连接光滑水平面,c处固定竖直挡板,bc间的水

物块每次与挡板碰后速度大小都是碰前的1/5,据机械能守恒定律,第n次与挡板碰前速度的大小等于第n-1次与挡板碰后速度的大小,设第一次与挡板碰前速度为v0,据机械能守恒定律,mgr=1/2*mv0^2,

如图,在竖直平面内固定一个半径为R的1/4光滑圆形轨道AB,底端B切线方向连接光滑水平面,C处固定竖直挡板,BC间的水平

物块第一次滑到C点时速度为V=sqr(2gh) (由机械能守恒定律得到)第一次碰撞C板后反弹速度为V/5     第二次反弹后速度为V/25

7、如图所示,可视为质点的、质量为m的小球,在半径为R的竖直放置的光滑圆形管道内做圆周运动,下列有关说法中正确的是( )

A由于这是一个圆环故小球在最高处v可以为0B若小球在最高处速度为√2gr,根据F=mv²/r有F=2mg环有向下mgD选项没有给数据啊!再问:C选项是2倍根号gr,D选项是5倍根号gr。。。

如图所示,质量为m的小球,在竖直放置的光滑圆形管道内作圆周运动.管道直径和小球大小忽略不计.当小球在管道底部具有速度v时

当小球在管道底部具有速度v时,运动到最高点速度为零,设半径为R,在该过程中,由动能定理有:-2mgR=0-12mv2…①当以2v的速度运动时,设到达最高点的速度为v′,由动能定理有:-2mgR=12m

在光滑绝缘轨道AB如图所示,光滑绝缘水平轨道AB与半径为R的光滑绝缘圆形轨道BCD平滑连接,圆形轨道竖直放

解题思路是能量法重力做负功,电场力做正功EQ(AB+R)=MGR你这个答案有问题?或者走到D是转了3/4圈?

航天宇航员在月球表面完成了如下实验:如图所示,在月球表面固定一竖直光滑圆形轨道,在轨道内的最低点,放一可视为质点的小球,

设月球表面重力加速度为g,月球质量为M.球刚好完成圆周运动,则小球在最高点有  mg=mv2r…①从最低点至最高点由动能定理得-mg•2r=12mv2-12mv20…②由①②可得;

如图所示,半径为R的半圆光滑轨道固定在水平地面上.A、B点在同一竖直直线上.

(1)小球从B到C,平抛运动时间t=√2h/g=√4r/g水平速度v0=AV/t=2r/√4r/g=√rg在B点使用向心力公式mg+FN=mv0^2/rFN=mv0^2/r-mg=mrg/r-mg=0

如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,求小球通过最高点时的最小速度,并判断以

小球运动到最高点时,设其速度为v,受到管道的支持力为T,则小球受到的竖直向下的力为mg+T,作为向心运动的向心力,故有mg+T=mv^2/R+r,当T=-mg时,v取最小值,v=0①.ab以下,小球受