如图2若h为ab上一点,连接ch.使角chb
来源:学生作业帮助网 编辑:作业帮 时间:2023/12/03 12:49:53
(1)证明:D,G分别为AB,AC的中点,∴DG‖BC,∠AGD=∠ACB=90°(注:‖为“平行于”)∠AGI=∠CGI=90°又AG=CG,GI=GI,由全等三角形的边角边定理得△AGI全等于△C
设AH=x,AO=r,C是以AB为直径的半圆O上一点,CH⊥AB于点H,CH^2=AH*HB=x(2r-x),∴CH=√[x(2r-x)],E为CH中点,∴EH=CH/2=(1/2)√[x(2r-x)
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
证明:1、∵AB∥DE∴弧AE=弧BD∵弧CD=弧BD∴弧AE=弧CD∵弧AC=弧AE+弧CE,弧DE=弧CD+弧CE∴弧AC=弧DE2、过圆心O作OG⊥AC于G,OH⊥DE于H,连接OA、OD∵弧A
对不起,你的图1我放大后还是看不太轻,大概知道位置,(1)用俩三角形全等来做因为△ACM,△BCN是两个等边三角形∴LACM=LNCB=60°,∵LACM+LNCB+LMCN=180°,∴LMCN=6
题目条件应该打错,是BE=CE(1)证明:AB是直径,∴∠ACB=90°∠A+∠ABC=90°∵CD⊥AB,∴∠BCD+∠ABC=90°∴∠A=∠BCD又∵∠A和∠E所对都是BC弧,∠A=∠E∴∠BC
角ecb=90-角dce角gcd=90-角dce因此两角相同因正方形.所以cd=cb角d=角cgd=90因此得出结论再答:写错了。角b=角cgd=90...
证明:(1)∵CH⊥AB,DB⊥AB,∴△AEH∽△AFB,△ACE∽△ADF.(1分)∴EHBF=AEAF=CEFD.∵HE=EC,∴BF=FD.(3分)(2)连接CB、OC,∵AB是直径,∴∠AC
(1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽△AFB,△ACE∽△ADF,∴EHBF=AEAF=CEFD,∵HE=EC,∴BF=FD(2)证明:连接CB、OC,∵AB是直径,∴∠ACB=90°∵
△ABC≌△ADC(平行四边形ABCD易得);由AB=AE、AB=CD和AD∥BC(平行四边形ABCD得)可知四边形ACED为等腰梯形从而△AEC≌△BCE、△AED≌△DCA又由全等的传递性可得△A
连DO、CO、AO,∠ACB=90°,AD=BD,根据直角三角形斜边上的中线等于斜边的一半,可得DA=DC,又DO=DO,OA=OC,因此△DOA≌△DOC,∴∠DCO=∠DAO=90°,∴CD是切线
证明:易得∠DHE=∠CHF=60°(对顶角相等)∵AB∥CD∴∠EKG=∠DHF=60°∴∠EGK=180°-(∠EKG+∠KEG)=180°-90°=90°故△EKG是直角三角形.//------
∠ACG=∠ABC=∠AFC,∠CAF公共,⊿ACG∽⊿AFC即AC÷AF=AG÷AC故AC^2=AG*AF
①当P在直线AB延长线上时,如图所示:连接OC,设∠CPO=x°,∵PQ=OQ,∴∠OQP=∠CPO=x°,∴∠CQO=2x°,∵OQ=OC,∴∠OCQ=∠CQO=2x°,∵点C为半圆上的三等分点,∴
(1)延长AE到F,使AE=EF,易证得△ADE≌△FBE,∴△ABF是直角三角形∴∠EAB=∠ABE,∴∠AEC=∠ABE+∠EAB=2∠B∵∠C=2∠B∴∠AEC=∠C(2)由(1)知△DAB≌△
因为正方形ABCD所以AD=AB所以角B=角DAB=90度因为DG垂直于AE所以角DGA=90度因为角ADG+角DAE+角DGA=180度,角EAB+角DAE=角DAB=90度所以角ADG=角EAB所
(1)、点C的纵坐标相等是常值函数y=c(c为常数)(2)、如果一些点在平行于Y轴的直线上,那么这些点的横坐标相等是x=c(c为常数)
注:以下不带绝对值“||”的OC等均表示向量.(1)设|OD|=x,则|OC+OD|²=|OC|²+|OD|²+2OC•OD=1+x²+2̶