如图2,过点e作圆o的切线,交ac延长线于点f
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 08:09:30
1.AB=4半径为2,即OA=OC=2又因为AC=2,所以三角形AOC是等边三角形角AOC=60度L为切线所以OC垂直于LBD也垂直于L,所以OC平行BD,角EBA=角AOC=60度OB=OE三角形B
(1)∵AD⊥BC,∴CD=BD,∴CE=BE,∵CO=BO,∴△OCE≌△OEB,∴∠OBE=∴BE与圆O相切.(2)连接BC,AB是直径,∠ACB=90°.sin∠ABC=
连接CD∵∠ACB=90°,AC为⊙O直径,∴EC为⊙O切线,且∠ADC=90°;∵ED切⊙O于点D,∴EC=ED,∴∠ECD=∠EDC;∵∠B+∠ECD=∠BDE+∠EDC=90°,∴∠B=∠BDE
(1)∵∠ACB=∠ABF=∠ABC,(圆周角等于弦切角)∴AB=AC(底角相等的三角形是等腰三角形).(2)连接DB,∵∠ADB=∠ABF=∠ABC,∴△ADB∽△ABE.∵AD=4,cos∠ABF
连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B
EP/BC=AE/ABED/BC=AE/OB显而易见的可以看出ED=2EP哪里看不懂,可以继续问.
(1)如图,连接OC,∵AB是直径,弦CD⊥AB,∴CE=DE在直角△OCE中,OC2=OE2+CE232=(3-2)2+CE2得:CE=22,∴CD=42.(2)∵BF切⊙O于点B,∴∠ABF=90
连接CD,∵弧AB=弧AC,∴AB=AC,∴∠ADB=∠ADC,连接AC,∵∠ACB=∠ADB=∠ADC,∠A=∠A,∴ΔACE∽ΔADC,∴AC/AE=AD/AC,AC^2=AE*AD=AE*(AE
因为PA,PB为切线所以PA=PB因为BD⊥PA于点D,AE⊥PB于点E三角形ABP的面积可以表示为二分之一BD*AP或者二分之一AE*BP所以AE=BD因为BD⊥PA,AE⊥PBAB=AB所以三角形
(1)结论:DE⊥BC.理由:连接OD,∵AB是⊙O的直径,∴OA=OB.∵AD=CD,∴DO∥BC.又∵DE是⊙O的切线,∴DE⊥DO,即∠ODE=90°.∴DE⊥BC.(2)连接BD,∵AB是圆的
连接AEAB为直径》》AEB=90AB=AC》》BAE=CAEBD为切线》》CBD=BAECBD=1/2*cab望采纳!谢谢!
解题思路:切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.解题过程:
证明:1)连接OD因为DE与圆O相切于D所以DO⊥DE因为AD平分∠BAC所以弧BD=弧DC所以DO⊥BC(根据垂径定理)所以DE∥BC2)因为弧BD=弧DC所以DC=BD=2因为DE∥BC所以∠E=
o的半径=2,应该是吧=-=再问:要过程类
1、∵OA=OC=4 AE=2∴OE=OA-AE=2 AB=2OA=8∵CD⊥AB , AB是圆O的
(1)连接AD,则角ADC=90度,因为AB=AC,所以D为BC中点,连接OD,因为O为AC中点,所以OD//AB,因为DM为切线,所以角ODM=角BMD=90度,又角AEC=90度,所以DM//CE
证明:连接OD、OE∵OB=OD∴∠OBD=∠ODB∴∠COD=∠OBD+∠ODB=2∠OBD∵EF切圆O于D∴∠ODE=90∵∠ACB=90∴∠ODE=∠ACB∵OD=OC,OE=OE∴△OCE≌△
1)证明:由OA=OB得,∠A=∠OBA又OC⊥OA,BE为圆的切线得90°=∠A+∠OCA=∠OBA+∠ABE,即∠OCA=∠ABE又∠OCA=∠BOE(对顶角)得∠ABE=∠BOE则三角形BCE为
因为AC是圆O的直径,所以CD⊥AB,EC切圆O,因为ED切圆O,所以DE=CE,则∠ECD=∠EDC,所以∠B=∠EDB,则DE=BE=CE,所以E为BC中点;所以BE=CE再问:为什么AC是圆O的