如图,在RT三角形中,角BAC等于90°点D,E在边BC上.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:23:20
根据三角形相似可以求出BC=15×15/9=25,AC=20 过E点作EF⊥AC于E,则有AF=EF 再根据相似,有(20/12x)²=x²+(20-x)² 解得,
如图,⊿EAB≌⊿EGB(AAS) EG=EA AB=GB ∴⊿FAB≌⊿FGB(SAS).GF=FA∠CAD=90&am
∵AC+GC=5(AC+GC)²=AC²+GC²+2AC*GC=25由弦切角定理可得角CEG=∠2∴△CGE∽△CEA∴CG:CE=CE:CA∴AC*CG=CE²
因为 AD平分角BAC 所以 ∠cad=∠dae 因为 
等腰直角三角形AN=BM,AD=BD,NAD=MBD=45所以NAD全等MBDDN=DMNDM=NDA+ADM=ADM+MDB=90
因为角BAC是90,角B=90-角C.角DAC=90-角BAD=90-2*角C.角ADB=角DAC+角C=90-2*角C+角C=90-角C=角B.因此三角形ABD是等腰三角形.AB=AD
连od,oa=od,角oad=角oda,又因为角cad=角oad,所以角cad=角ado,od平行ac,得三角形bdo相似三角形bca,od/ac=ob/ab,可求ab=20,设半径为x得x/12=2
第一个知识点:∠BDA=∠C+∠DAC(外角等于不相邻两内角和)……式子1第二个知识点:∠BDA=∠ABD(等腰三角形底角相等)……式子2第三个知识点:∠ABD+∠C=180°-∠BAC=90°(内角
(1)由ACAB=2,得到AC=2AB,再由O为AC的中点,得到AC=2OC,可得出AB=OC,由∠BAC=90°,AD⊥BC,利用同角的余角相等得到一对角相等,再利用外角性质得出一对角相等,利用AA
证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A
证明:过点D作DE⊥AB于E∵∠C=90,∠B=30∴∠BAC=180-∠C-∠B=60∵AD平分∠BAC∴∠BAD=∠CAD=∠BAC/2=30∴∠BAD=∠B∴BD=AD∵DE⊥AB∴AE=BE=
证明:AD平分∠BAC,则∠CAD=∠DAB=(∠CAB)/2AD=BD,在三角形ADB中,则:∠DAB=∠B所以∠B=(∠CAB)/2因为∠C=90°,所以:∠B+∠CAB=90°,所以3∠B=90
此题无图,E点也不明确.设E为AD与BC的交点,则:(1)∵AD为∠A的平分线∴∠BAE=∠ABC=30°∴AE=BE(2)∵在△AEC中∠C=90,∠EAC=30∴CE=1/2AE∵BD∥AC∴∠D
图与题目不符,问题是什么?
半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π
解题思路:数量关系为:BE=EC,位置关系是:BE⊥EC;利用直角三角形斜边上的中线等于斜边的一半,以及等腰直角三角形的性质,即可证得:△EAB≌△EDC即可证明.解题过程:附件
(1)相等,因为直角三角形斜边中线等于斜边一半,故AD=1/2BC=CD=DB(2)等腰Rt△DMN连接AD,∵AN=BM,角NAD=角DBM=45°,AD=BD∴△NAD全等于△MBD(SAS)∴D
解题思路:(1)∵AD⊥BC∴∠DAC+∠C=90度∵∠BAC=90°∴∠BAF=∠C∵OE⊥OB∴∠BOA+∠COE=90°∵∠BOA+∠ABF=90°∴∠ABF=∠COE∴△ABF∽△COE。(2
求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的
解题思路:请把图发过来解题过程:请把图发过来最终答案:略