作业帮 > 数学 > 作业

抽象函数解析式解法一:令x=1,y=-1,代入:f(0)=f(1)=1;令y=1,代入原式:f(x+1)=f(x)+2(

来源:学生作业帮 编辑:拍题作业网作业帮 分类:数学作业 时间:2024/04/26 08:01:47
抽象函数解析式
解法一:
令x=1,y=-1,代入:
f(0)=f(1)=1;
令y=1,代入原式:
f(x+1)=f(x)+2(x+1)(需要注意的是x=0时,这个式子不成立)
移项后:
f(x+1)-f(x)=2x+2
这个显然是个递推式,下面用n代替x进行演绎:
显然
f(2)-f(1)=2*1+2
f(3)-f(2)=2*2+2
…………………
f(n)-f(n-1)=2*(n-1)+2
以上等式分别相加起来
f(n)-f(1)=2*[(n-1)+(n-2)+……+1]+2*(n-1)
将f(1)=1代入,得:
f(n)=n^2+n-1
将n换成x,则得到分段函数:
f(x)=x^2+x-1(x>0)
f(0)=1(x=0)
解法二:
令x=1,
f(y+1)=f(1)+2y(y+1)=2y^2+2y+1
令x=y+1,y=x-1
f(x)=2(x-1)^2+2(x-1)+1
即f(x)=2x^2-2x+1
我很迷茫
已知f(x)对任意实数x,y都有f(x+y)=f(x)+2y(x+y)且f(1)=1求f(x)的解
看了两题的解法均是完全正确的,解法一虽用自然数来代替实数进行运算,推广到实数是可以的,但是两种完全正确的解法却得到了互相矛盾的结论,如何来解释这种现象呢?
实际上这并不奇怪,在数学上我们经常用这种方法来证明一个论断或命题不真.如有一个命题A,该命题为真的情况下推出互相矛盾的命题,或者说命题A蕴含了一个矛盾,则命题A为假,也即命题A蕴含命题B,命题A蕴含命题非B,则命题A为假.逻辑学中有这样一个结论,假命题可导出任意命题.
对于该题的分析,设命题A:存在函数f(x)对任意实数x,y都有f(x+y)=f(x)+2y(x+y),然后我们利用了正确的推导得出了两个互相矛盾的命题,由此可得“存在函数f(x)对任意实数x,y都有f(x+y)=f(x)+2y(x+ y)”是不真的,实际上该函数条件中已明显蕴含了矛盾,已有人看出当x=1,y=-1代入条件式f(x+y)=f(x)+2y(x+ y)得,f(0)=f(1),再将x=0 y=1代入条件式又得f(1)=f(0)+2,于是得到0=2的结果,这显然得出了错误的结果.题中所给的函数是不存在的,该题的前提已蕴含了矛盾,由此得出两种不同的结果是毫不奇怪的,还有可能,利用正确的推导得到第3种,第4种等等结果.
总之,该题条件矛盾,如果将该题改为这样:证明不存在对任意实数x,y满足条件f(x+y)=f(x)+2y(x+y)的函数,假设该函数存在,由此得出的两种矛盾的结果恰好反证了该函数不存在.