n阶方阵A与某对角矩阵相似,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/30 14:02:03
若A,B均为n阶矩阵,且AB=BA,证明:如果A,B都相似于对角矩阵,则存在可逆矩阵C使C^1AC与C^1BC均为对角矩

A,B满足上述条件称为同时对交化.当且仅当A,B可交换,A,B可同时对角化.具体的证明,如果C^(-1)AC与C^(-1)BC均为对角矩阵,则C^(-1)ACC^(-1)BC=C^(-1)BCC^(-

设A为4阶方阵,其伴随矩阵的特征值为1,-2,-4,-8,证明A与对角矩阵相似,并写出对角矩阵的一种情况.

由于|A*|=1*(-2)*(-4)*(-8)=-64≠0,则A*可逆AA*=|A|E,得|AA*|=||A|E|=|A|^4*|E|=|A|^4,因此|A*|=|A|^3,可得|A|=-4AA*=|

求教!】A是n阶方阵,A^2=A,证明:A相似于对角矩阵

证明:因为A^2=A,所以A(A-E)=0所以r(A)+r(A-E)

已知n阶方阵A与某对角矩阵相似,则

C正确A不对,A有n个不同的特征值,则A与某对角矩阵相似.反之不成立.B.不对.D.不一定再问:解释一下再答:A不对,A有n个不同的特征值,则A与某对角矩阵相似.反之不成立.B.不对.反例123045

设A为3阶方阵,已知E-A,E+A,3E-A都不可逆,证明A与对角矩阵相似

矩阵E-A,E+A,3E-A都不可逆,即1,-1,3是A的三个不同的特征根,所以A一定相似于对角阵.经济数学团队帮你解答,请及时采纳.

n阶方阵与某一对角矩阵相似 A.方阵A的秩序等于n对不对

不对.相似矩阵有相同的秩A的秩等于那个对角矩阵主对角线上非零元素的个数

证明:如果n阶矩阵A与对角型矩阵合同,则A是对称矩阵.

这个就按照合同的定义和脱衣原则就可以证明.A=P'diagP,其中diag是对角阵,P是可逆矩阵,这是合同的定义.那么A'=(P'diagP)'=P'diagP,第二个等号就是脱衣原则.就是去括号后从

n阶方阵A有n个不同特征值是A与对角阵相似的什么条件?

充分非必要再问:从前推到后不是必要条件吗?我弄不清什么是充分条件什么是必要条件再答:从前推到后是充分条件,反过来是必要条件

若存在正整数m,使得A^m=E,这里的E为单位矩阵,A为n阶方阵,证明A相似于对角型矩阵

"因为最小多项式肯定整除x^m-1,那么最小多项式没有重根,那么可对角化"对的也可以直接讨论Jordan块,因为J^m是可以具体算出来的再答:我这里写的J代表一个Jordan块

设A是n阶方阵,A有n个不同的特征值是A与对角相似的?条件...

填入:充分若A有n个不同的特征值,则A与对角相似.但逆不成立.

n阶方阵A具有n个不同的特征值是A与对角阵相似的______条件.

由于“n阶方阵A与对角矩阵相似的充要条件A有n个线性无关的特征向量”,而A具有n个不同的特征值,则A一定有n个线性无关的特征向量因此,n阶方阵A具有n个不同的特征值⇒A与对角矩阵相似但反之,不一定成立

已知三阶方阵A的特征值是0.1.-1 则下列命题不正确的是:A方阵不可逆 B方阵与对角矩阵相似 C1和-1所对应的特征向

A正确,行列式为0,矩阵A不可逆B三个特征值,3个特征向量,相似C不同特征值对应的特征向量正交D,R(A)=2,齐次方程解的个数为1个,基础解系就是1个向量!您好,liamqy为您答疑解惑!如果有什么

刘老师,n阶矩阵A与对角矩阵相似时,必须满足的条件为?

必须满足A有n个线性无关的特征向量---事实上这是A可对角化的充要条件或者A的k重特征值有k个线性无关的特征向量

n阶方阵A与对角矩阵相似的充分必要条件是A有?

n阶方阵A可对角化的充分必要条件是A有n个线性无关的特征向量![证明]充分性:已知A具有n个线性无关的特征向量X1,X2,……,则AXi=入iXii=1,2,……,nA[X1X2……Xn]=[入1X1

n阶方阵A与某对角矩阵相似 则方阵A的秩等于n这句话怎么错了,能举个例子帮我理解一下吗?

相似矩阵的秩相同对角矩阵的秩等于其主对角线上非零元素的个数,并不等于n如:A=1000与其自身(对角矩阵)相似,但r(A)=1≠2.

n阶矩阵A的n次方等于单位矩阵,则A相似于对角矩阵

A可对角化的充要条件是A的极小多项式没有重根这里A的极小多项式一定是x^n-1的因子,显然无重根

若3阶方阵A的特征值为-1,0,1,则矩阵B=A³-A+2E的相似对角矩阵为?

B的特征值,2,2,2再答:所以B的相似为diag(2,2,2)再问:B的特征值怎么算再答:带进去啊再答:A的特征值带入A

设A是n阶方阵,若有正整数k,使得A^k=E,证明A相似于对角矩阵

因为A^k=E所以A可逆,即A的特征根非零.如果A不可对角化,根据亚当标准型,存在两个非零向量x1,x2,及一个非零特征根a,使得:Ax2=ax2,Ax1=ax1+x2.则:A^2x1=A(ax1+x

任意n阶方阵都可表示成 A=D+N的形式,其中D与某对角矩阵相似.N为幂零矩阵(即存在m使得N^m=0)且DN=ND

这个分解叫Jordan–Chevalley分解,如果在复数域上讨论的话直接从Jordan标准型入手进行拆分即可.当然事实上结论对一般的域也是对的.