n阶对称幂等矩阵的迹等于其秩

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/01 08:39:51
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0

设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对

设A为n阶实对称矩阵,若A的平方等于E,证明A是正交矩阵

正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立

如何证明n阶矩阵的特征多项式等于其(特征矩阵)不变因子的乘积

只需注意到特征多项式即为该蓝布他矩阵的n阶行列式因子Dn,而Dn=d1d2……dn其中di为i阶不变因子

设n阶实对称矩阵A的秩为r(r

可以用Gauss消去法证明可以合同对角化,然后只要加一句可逆变换不改变秩即可.如果还不会看下面的提示:取一个非零2阶主子式,若其对角元为0则用[1,1;-1,1]作用上去,这样它至少一个对角元非零.不

请问:n阶实对称矩阵,其相同的特征值所对应的特征向量,一定不正交吗?

相同的特征值所对应的特征向量,一定不正交吗?不一定正交,但一定可以规范正交.也就是一定存在正交的情况.比如知道特征值为1,1,2并知道特征值1对应的一个特征向量a,特征值2对应的一个特征向量b,再求最

设A是n阶实对称幂等矩阵,即A²=A.

(1)A是n阶实对称幂等矩阵,故A的特征值只能是0和1故存在正交矩阵Q,使得(Q-1)AQ=diag(1,1,……,1,0,……,0)(2)设特征值1是r重,0是n-r重,则矩阵A-2I有r重特征值1

为什么n阶实对称矩阵A为正定矩阵,则其对角线上的元素都大于零

取x=(0,...,1,...,0)^T,第i个分量为1,其余为0则x^TAx=aii>0.即得A的主对角线上元素都大于0.再问:x^TAx为什么大于0啊再答:因为A正定

证明:秩等于r的对称矩阵可以表成r个秩等于1的对称矩阵之和

提示一下,化成合同标准型即可再问:能不能说详细点再答:A=C*D*C^T假如D只有一个对角元非零,那么C*D*C^T是秩1矩阵这里D有r个非零的对角元,那么拆成r个只含一个非零元的矩阵之和即可

设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵

B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)

证明实对称矩阵行列式的值等于其特征根的乘积?

不必加条件"实对称矩阵"A的特征多项式|A-λE|=(λ1-λ)(λ2-λ).(λn-λ)λ=0时有|A|=λ1λ2...λn即A的行列式等于其全部特征值之积(重根按重数计)

什么是对称幂等矩阵

幂等矩阵幂等矩阵(idempotentmatrix)若A为方阵,且A^2=A,则A称为幂等矩阵.幂等矩阵的2个主要性质:1.其特征值只可能是0,1.2.可对角化.如果要加个对称的条件,那么就满足A^T

为什么这个实对称矩阵的秩小于阶数可以推得 矩阵的行列式等于0?

关于这个我建议你应该仔细看一下矩阵秩的定义,对于3阶实对称矩阵来说,矩阵秩表示它至少有一个2阶子矩阵的行列式为0,而3阶子矩阵即矩阵本身的行列式为0再问:一下子忽略了定义。

线性代数 若n阶对称矩阵A是正定矩阵,那么A的秩一定为n吗?为什么呢?

正定矩阵首先是满秩矩阵,因此答案是正确的.

全体n阶实对称矩阵,按其合同规范形分类,共可分几类?

设正惯性系数是p,负惯性系数是q,可以先列举一下,当p=0,q可以从0取到n,这样就有n+1种情况当p=1,q可以从0取到n-1,这样就有n种情况.当p=n,q只能取0,是1种情况所以1+2+3+.+

对于实对称矩阵或可相似对角化的矩阵,其秩就是非零特征值的个数(其中n重根以n个记),如果0不是该矩阵的特征值,此矩阵满秩

设原矩阵为A,相似对角矩阵为B,则存在可逆矩阵P,使得:B=P^(-1)·A·P由于乘以一个可逆矩阵,矩阵的秩不变,∴ R(B)=R(A)如果0不是该矩阵的特征值,则R(A)=R(B)=n所

证明:n阶矩阵A对称的充分必要条件是A-A'对称

证明:如果A对称,则A-A'=0对称.如果A-A'对称,又A+A‘对称.所以A=1/2(A-A’)+1/2(A+A’)对称.

怎么证明对称矩阵的所有特征值之和大于等于其最大特征值

对于ATA这样的矩阵才有这个性质,用二次型来证明,不懂再留言吧

n阶实对称幂等矩阵A(即A2=A)它的秩为r,求标准型

设a是A的特征值则a^2-a是A^2-A的特征值因为A^2-A=0所以a^2-a=0所以a=1或a=0即A的特征值只能是1或0.又因为A为实对称矩阵,所以A必可正交对角化即存在正交矩阵T满足T^-1A