n维欧式空间中变换A既是对称变换又是反对称变换,那A是什么变换

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 13:54:17
设A,B为两个n阶正交矩阵,证明:AB-1的行向量构成n维欧式空间Rn的标准正交基

两个正交矩阵的乘积仍是正交矩阵,正交矩阵的逆仍是正交矩阵.一个n阶矩阵的A行(列)向量可以构成Rn的标准正交基的充要条件是A是正交矩阵.具体的说明,你自己补全下.

设a是n维欧式空间V的一个单位向量,在V上定义变换T为T(x)=x-2(x,a)a,在V中找出一组标准正交基,使T在这组

⑴T(x)=x-2(x,a)aT²﹙x﹚=T﹙T﹙x﹚﹚=x-2(x,a)a-2﹙[x-2(x,a)a],a﹚a=x-2(x,a)a-2﹛﹙x,a﹚a-2[(x,a)a,a﹚]a﹜=x-2(

正交变换的证明题证明:A是n维欧式空间V的一个线性变换,若A在任一组标准正交基下矩阵是正交矩阵,那么A是正交变换.

根据定义,要证明是正交变换,只要证明该变换保持内积不变就行了.设a,b是V中的两个向量,a在标准正交基下的坐标是X=[x1,x2,...,xn]'('表示转置)b在标准正交基下的坐标是Y=[y1,y2

设σ是欧式空间V的一个线性变换,证明:如果σ是正交变换,那么σ保持任意两个向量的夹角不变,反之不然.

正交变换满足σ^Tσ是恒等映射.因此对任意的两个非零向量a,b,有==,即正交变换保持内积不变,因此||a||^2==.长度不变.于是a与b的夹角cos(theta)=/【||a||*||b||】在正

设σ是欧式空间V的一个线性变换,证明:σ是正交变换的充要条件是对V的任意向量=.

注意σ(ζ)=0等价于0==,即ζ=0用上述性质直接验证σ是线性变换即可:σ(ζ+η)-σ(ζ)-σ(η)=0σ(kζ)-kσ(ζ)=0

线性代数题欧式空间设a1,a2…am是n维欧式空间V的一个标准正交向量组.证明对V中任意向量a有【求和(i从1开始到m)

记Q=【a1,a2,...,an】是正交阵,其中am+1,am+2,...,an和a1,...,am组成V的正交基,因此有Q^Ta模长的平方=a^TQQ^Ta=a^Ta=a的模长的平方.注意到要证不等

高等代数,欧式空间,以某组基的度量矩阵作为过度矩阵而作基变换.若有一线性变换A,基变换

前一题有点问题后一题的关键是除法,对于代数元可以构造出1/f(α),对于超越元除法是不封闭的,有理函数才能构成域再问:哈哈,谢谢电灯大师的指导,嗯,不过想了一会才明白,今年考研遇到了很多不会的题望以后

证明:所有N阶对称矩阵组成(N^2+2N)/2维线性空间;所以反N阶对称矩阵组成(N^2-N)/2维线性空间;

n阶对称矩阵的主控元素是主对角线上方(含主对角线)的元素记Eij为第i行第j列元素为1,第j行第i列元素为1,其余全是0的n阶矩阵则Eij,i

高等代数考研题设V是4维欧式空间,A是V的一个正交变换.若A没有实特征值,求证:A可分解为两个正交的二维A不变子空间的直

感觉题目有点问题,最后应该是证明:V可分解为两个正交的二维A不变子空间的直和,否则A作为一个变换怎么分解为直和?我得想法:V是4维空间,则A的特征多项式为4次,又没有实特征值,从而特征多项式一定是两个

设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2

将a1,a2...am扩充为V的标准正交基a1,a2...am,...,an任一向量a可表示为a=k1a1+k2a2+...+kmam+...+knan(a,ai)=ki||a||^2=(a,a)=(

证明:在n维欧式空间中,两两成钝角的非零向量不多于N+1个

用反证法吧.假设a1…an+2(下标,后同)两两互为钝角n维空间任意n+1个向量线性相关,即存在不全为0的数k1….kn+1使得k1a1+…+kn+1an+1=0两边跟an+2内积,k1<a1,an+

在n维欧式空间中,不存在n+1个两两正交的非零向量,为什么?

只要证明两两正交的非零向量线性无关即可,用线性无关的定义去证明.再问:我要解答过程再答:我只给提示

关于线性代数 线性空间 和 欧式空间

欧式空间V有有限的标准正交基,个数为dimV ,设dimV=n,任何n维欧氏空间都与R^n同构正交阵行向量或列向量是单位向量.即元素的平方和为1,n*(1/4)^2=1 所以n=1

正交变换证明设V是n维欧式空间 a b属于V 且\a\=\b\ 证明 V有正交变换T使 T(a)=b

a=0时必有b=0,线性变换T0=0,结论显然成立;a≠0时:(εi、ηi为两组标准正交基)令a=∑xiεi,由于(a,a)=(b,b),(b-∑xiηi,b-∑xiηi)=0,b-∑xiηi=0,b

线性代数N位向量欧式空间问题

a2=(1,0,-1),a3=(-1,0,1)

高等代数的问题:谁能给矩阵A,B(A,B属于n阶矩阵)定义个内积,使这个n阶矩阵是欧式空间?急,

一个“愚蠢”的定义是直接将A、B看作n^2维向量,用普通的向量内积.因为要求的是一个欧氏结构,所以这些矩阵是实数域上的.那么不“愚蠢”的定义可以这么做:=tr(A^TB)(A的转置左乘B,然后取迹)用

n维欧氏空间的对称变换T在标准正交基下的矩阵B即是正定矩阵又是正交矩阵,证明:T是恒等变换

利用正交矩阵的特征值的模为1,正定矩阵的特征值为大于0的实数得到B的特征值都是1正定矩阵可对角化,有B只能与E相似所以B=ET是恒等变换命题成立