级数sin(n^2 1) npi的收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/07 00:27:17
如何判断级数 ∑1/[n*sin(n)]的敛散性?

数学问题不易从表面判断难度,自己想的题搞不好就和世界难题相关.好在你这道题目本身还算简单.由1/π是无理数,可用抽屉原理证明:存在无穷多组正整数m,n,满足|n/π-m|对满足上述要求的n,可知:|n

判断级数 ∑ (sin n)/n^2的敛散性

很简单(sinn)/n^2≤1/n^2因为|sinn|≤1∑1/n^2绝对收敛,所以原级数也绝对收敛

级数∑n=1到∞ (根号下n)*sin(1/n^2)的敛散性

收敛,因为当n充分大的时候,sin(1/n^2)

怎么判断级数∑[0→∞]sin[n/﹙n+1﹚]的敛散性?

limsin[n/﹙n+1﹚]=sin1,不等于0而级数收敛的必要条件是通项收敛于0,所以发散

求交错级数(-1)^n-1 * sin 1/n 的收敛性

n趋向无穷大时,sin1/n与1/n同阶【limsin1/n/(1/n)=1】所以只需要判断(-1)^n-1*1/n的收敛性由莱布尼兹判敛法,1/n趋向于0,且递减,所以,是收敛的

级数(1/n)-sin(1/n)的敛散性如何证明

这个显然是正项级数求极限n→∞lim(1/n-sin(1/n))/(1/n³)=1/6≠0所以,原级数和1/n³有想同敛散性所以原级数收敛

级数的一般项为:sin (n*pi )/4,求级数的收敛性

此级数发散以为当n=8k时,sin(nπ/4)=sin2kπ=0当n=8k+2时,sin(nπ/4)=sin(2kπ+π/2)=1当K趋于无穷大时级数分别收敛与0和1所以发散

(r^n)*sin(nx) 级数求和

令z=r[(cosx)+i(sinx)]那么z^n=(r^n)(cosnx)+i(r^n)(sinnx)(r^n)sin(nx)级数和就是z^n等比级数和的虚部

利用比较审敛法判定级数[∞ ∑ n=1] sin[π /(2^n)]的敛散性

因为当n趋于无穷时,π/2^n趋于0所以根据等价无穷小的代换:sint〜t(t—>0),有sin[π/(2^n)]〜π/(2^n)(n—>无穷)所以[∞∑n=1]sin[π

电子行业的NPI是什么意思?NPI工艺工程师主要职责是什么?

NPI是NewProductIntroduction的所写,翻译对了.是新产品导入的意思.NPI流程是很复杂的一个流程,做NPI的人必须对某一个行业非常熟悉,包括很多部门的配合,其中有采购,SOURC

级数(1/n) × sin(πn/2)的敛散性

该级数实为1,0,-1/3,0,1/5,0,-1/7,0,……,1/4t,0,-1/(4t+2),0,……我们将1/4t,0,-1/(4t+2),0的和组成一项有an=1/4n-1/(4n+2)=1/

判别级数∑(n=1,∝) sin^n/n*根号下n的敛散性,

考虑其正项级数,对其分子进行放缩,利用比较判别法可知原级数收敛,具体解题步骤如下

判别级数∑(n=1,∝) 2^n sin(π/3^n) 的敛散性

∑(n=1,∝)2^nsin(π/3^n)当n趋于无穷大时sin(π/3^n)~π/3^n所以∑(n=1,∝)2^nsin(π/3^n)与∑(n=1,∝)2^n(π/3^n)=∑(n=1,∝)π(2/

级数从1到∞ Σ[1/ln(n+2)]*sin(1/n) 判断该级数的敛散性

sin(1/n)~1/n原级数化为1/nln(n+2)这是一个重要的级数有级数从2到∞Σ1/n^p(lnn)^q有p>1或p=1且q>1是收敛p

求交错级数(-1)^n-1 * sin( 1/n )的收敛性

y=sinx(0,π)是递增函数;y=1/x(0,1)是递减函数;故sin1/n是递减的.然后,根据莱布尼茨定理交错级数(-1)^n-1*sin(1/n)收敛.

级数sin(n+1/n)π的收敛性

sin(n+1/n)π=sin(π+π/n)=-sin(π/n)即只需要判断-sin(π/n)的收敛性而limsinx/x=1【x趋向于0时,在这里就是sin(π/n)与(π/n)的极限是1,即是同阶

级数的收敛问题级数sin n/n方的收敛性?(发散,条件收敛,绝对收敛?)

因为sinn=n-n^3/3!+aa是高阶无从小.那么级数sin/n=1-n^2/3!,由于1-n^2/3!当n->无从时不趋于零.所以原级数发散.