曲面与xoy围成的立体体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/17 22:04:02
微积分.曲面z=1-(x^2+y^2)与平面z=0围成的立体的体积是?

所求区域可以看成许多圆叠加而成,过程在截图里.

求由旋转抛物曲面Z=x^2+y^2与平面z=1所围成的立体的体积

由旋转抛物面的性质,所围体积等于y=x²围绕y轴旋转所得体积,积分区域x(0,1)V=∫πx²dy=2∫πx³dx=π/2

求曲面z=x²+2y²与z=6-2x²-y²所围成的立体体积 (求:图怎么画.)

再答:那个图画得可能有点纠结,但就是那样的,开口向上的是z=x^+2y^2,开口向下的是z=6-2x^2-y^2再答:这个是二重积分后面的练习题,也可以用三重积分来做再答:再答:被积函数为1的三重积分

求曲面z=x^2+y^2和z=6-2x^2-2y^2所围成的立体的体积

图形是一个开口向上的抛物面和一个开口向下的抛物面围成的立体不用考虑图形具体的样子首先求立体在xy坐标面上的投影区域把两个曲面的交线投影到xy面上去即两个方程联立:z=x²+y².①

微积分.曲面z=2-(x^2+y^2)与平面z=0围成的立体的体积是?

把曲面投影到xoy平面上,然后用极坐标.先积z,∫dz上限为2-r^2,下限为0,在积∫rdr,上限为根号2,下限为0,最后∫d(cita),上限为2pi,下限为0,得出答案

计算由曲面z=x*x+y*y及平面z=1所围成的立体体积

z从0到1,立体垂直于z轴的截面为圆,半径r^2=x^2+y^2,面积s=πr^2=π(x^2+y^2)=πz.所以V=s(z)从0到1的积分,所以V=πz^2/2|(0,1)=π/2-0=π/2由旋

利用三重积分计算由曲面所围成的立体的体积

由z=6-x-y,z=√(x+y)得D:0≤x+y≤4空间闭区域Ω可表示为:{(x,y,z)|√(x+y)≤z≤6-x-y,0≤x+y≤4}V=∫(上限2π,下限0)dθ∫(上限2,下限0)rdr∫(

用三重积分 求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.

Ω由z=x²+2y²及2x²+y²=6-z围成.消掉z得投影域D:x²+2y²=6-2x²-y²==>x²+y

计算由曲面z=1-x^2-y^2与z=0所围成的立体体积

这题用二重积分,三重积分都可求得.

画出下列各组曲面所围成的立体图形

没有合适的画图工具,大致画了一下草图

求曲面围成的立体体积x=0,y=0,z=0,x=2,y=3与x+y+z=4

图为表达式,以下用matlab求解,你可以手算积分!>> clear>> syms x y>> V=int(int

求曲面z=1-x平方-y平方与平面x=0围成的立体体积

答:平面应该是z=0吧?或者方程左边的z应该有平方?否则围不成封闭区域.即z=1-x²,z>=0绕z轴一圈围成的体积.V=π∫(0到1)(1-x²)²dx=8π/15

曲面z=(x^2+y^2) 被柱面^2+y^2=4及xoy平面所围成的立体体积

转化为极坐标求解则z=r^2;dv=2πrdr*z(r)=2πr^3dr;对dv求积分,上限为2,下限为0;

求曲面z=1 4x^2 y^2与xoy面所围成的立体的体积

如果我没算错的话,应该是PI/4,PI就是圆周率∫∫(1-4x^2-y^2)dS,S为区域4x^2+y^2

(二重积分)求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.

图形是一个开口向上的抛物面和一个开口向下的抛物面围成的立体,不用考虑图形具体的样子首先求立体在xy坐标面上的投影区域,把两个曲面的交线投影到xy面上去,就是两个方程联立,消去z,得x^2+y^2=2,

如何求由曲面z=√x^2+y^2,x^2+y^2=2ax与平面z=0围成的立体的体积,

它是由圆锥面、圆柱面和XOY平面围成.用极坐标做较方便.z=√x^2+y^2变成z=ρ,,x^2+y^2=2ax变成ρ=2acosθ,积分区域D:0

利用二重积分 求曲面围成的立体体积x=0,y=0,z=0,x=2,y=3与x+y+z=4

所求体积=∫dx∫(4-x-y)dy=∫[3(4-x)-9/2]dx=∫(15/2-3x)dx=9.