已知O为直线MN上的一点,且∠AOB为直角,OC平分∠MOB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:52:58
如图,已知直线PA交圆O于A、B两点,AE是圆O的直径,点C为圆O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D

设DA=X,DC=6-DA=6-X,连接EC,AE是直径,所以∠ACE=90°=∠CDA,∠CAE=∠CAD,所以⊿ACE∽⊿ADC,[AA]AE:AC=AC:ADAC²=AE*ADAD&#

21.如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直于直线AB.点p时圆O上异于A,B的任意一点,

21.令圆心(0,0),A(-2,0),B(2,0),L:x=4,P(2cosz,2sinz)则AP与L交点为M[4,6sinz/(1+cosz)],BP与L的交点为N[4,2sinz/(cosz-1

如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC,OD,OE,且OC平分∠AOD,

∠2与∠1是哪个?有图吗?再问:再答:����ocƽ�֡�AOD��AOC��50º���AOD��2��AOC��100º�ߡ�AOB��180º���BOD��180

如图,已知O为直线AC上的一点,过点O引三条射线OB OD OE,且OD平分角AOB

1.∵角平分线∴∠BOD=1/2∠AOB,∠BOE=1/2∠BOC∴∠DOE=∠BOD+∠BOE=12/(∠A0B+BOC)=1/2∠AOC=90°2.∵3角EOB等于角EOC,角DOE等于50度∴∠

如图,已知直线PB交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA,垂足为

连接OC,过点O作OF⊥AC于F∵CD⊥PA,OF⊥AC∴∠ADC=∠AFO=90∵AC平分∠PAE∴∠PAC=∠OAC∴△ACD∽△AOF∴AF/OF=AD/CD∵CD=2AD∴AD/CD=1/2∴

如图,已知直线PA交圆O于A,B两点,AE是圆O的直径,C为圆O上一点,且AC平分角PAE 若AD:DC=1:3 求圆O

半径等于3AC/2连接CE,根据圆的性质AC垂直于CE因为角DAC=角CAE所以三角形ADC与三角形ACE相似所以AC/AE=AD/DC所以AE=3AC所以半径=3AC/2

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径.点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为

1连接OC因为OA=OC所以∠OAC=∠OCA因为∠OAC=∠PAC所以∠OCA=∠PAC所以OC//PA因为CD⊥PA所以OC⊥CD所以CD是⊙O的切线2连接CE因为CD⊥PA,AD:CD=1:3所

如图,已知直线 交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA ,垂足为D

出现DC+DA=6一般首先考虑从几何上构造.但是这个题有更简单的方法.题目给出AE=10,而三角形ACD和AEC相似,设AD=x,DC=y,可以根据相似关系列出xy的一个关系式.结合x+y=6可以列两

已知:如图,点O为直线AB上一点,过点O在直线AB的同侧作射线OD、OC、OE,且OD是∠AOC的平分线,∠DOE=90

OE是∠BOC的平分线.理由如下:∵OD是∠AOC的平分线,∴∠AOD=∠COD,又∠DOE=90°,∴∠COD+∠EOC=90°,∴∠AOD+∠EOB=90°,∴∠EOB=∠EOC,∴OE是∠BOC

已知:如图,⊙O的直径AB=10,P为OA上一点,弦MN过点P,且PA=2,MP=2√2,求弦MN和弦心距OD的长

∵OA=5PA=2∴OP=3PB=8∴2√2PN=2×8PN=4√2MN=6√2MD=3√2OD=√【5²-(3√2)²】=√7

已知直线l:y=3x和点M(8,3),N是l上一点,N在第一象限内,且MN与直线l,x轴正半轴围成的三角形面积为42,求

设直线MN解析式为:Y=KX+b,过M(8,3),∴3=8K+b,b=3-8K,.①令Y=0,得X=-b/K,∴MN与X轴交于A(-b/K,0),解方程组:Y=3XY=KX+b得:X=b/(3-K),

初二上学期几何提问二、如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的

已知D是正方形ABCD上的顶点;G是正方形AEFG上的顶点,连接DG,得△ADG,与直角三角形ABE相比较可知,AD=AB,AG=AE,∠BAE=∠DAB-∠EAD=90°-∠DAE而∠DAG=∠GA

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A,B的任意一点,直线PA

(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x

已知抛物线y平方=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且满足|NF|,则MN所在直线的斜率为?

斜率k=tan30°=根号3/3过n作一直线‖x轴,与准线交于a,则an即n到准线距离.根据抛物线性质,an=nf,∴an=二分之根号三|MN|,RT△anm中,斜边mn=x,an=二分之根号三×x,

如图所示,已知O为直线AC上一点,

设∠BOE为x∵OD平分∠AOB,∠DOE=60°可得方程 2(60-x)+4x=180    解得x=30∴∠EOC=3x=90°

已知直线MN及MN外一点O,过O作射线OA平行MN,在作射线OB平行MN,则角AOB的度数是多少,为什么

0°或者是180°,因为平行只有是直线好比这样:(B)A____.O_____BM-----------------N

如图,AB是⊙O的直径,C为圆周上的一点,过点C的直线MN满足∠MCA=∠CBA.

(1)证明:连接OC,∵AB是⊙O直径,C为圆周上的一点,∴∠ACB=90°,即∠ACO+∠OCB=90°,∵OC=OB,∴∠OCB=∠OBC,又∠MCA=∠CBA,∴∠MCA=∠OCB,∴∠ACO+

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA于D.

(1)证明:连接OC.∵OC=OA,∴∠OAC=∠OCA.∵AC平分∠PAE,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴AD∥OC.∵CD⊥PA,∴∠ADC=∠OCD=90°,即 CD⊥