一个正项级数收敛 则后一项比前一项一定小于1嘛

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 00:29:35
正项级数un,vn收敛 求证 级数(un+vn)^2收敛 高手来 !

若正项级数un收敛,则un收敛到0,即存在N,当n>N时,un

这个交错级数收敛吗?没有正负号的原级数证出来是发散的这个交错级数不满足莱布尼兹定理(后一项小于等于前一项)所以不能用莱布

用后项此前项,极限无穷,级数发散再问:原级数是发散,但是怎么证明交错级数的敛散性呢?再答:先看对应的正项级数是否收敛如果发散,再用莱布尼兹交错级数判别定理判断一般方法是这样

麻烦给个例子,两个发散的正项级数相加得到的新级数收敛的!

∑[1/n^2+(-1)^n]与∑(-1)^{n-1}都是发散的,但逐项相加得∑1/n^2收敛再问:但这两个级数并不是正项的啊再答:两个发散的正项级数相加肯定还是发散的,这是因为正项级数发散以为这其部

判断题:一般项数值级数收敛,则它的绝对值级数也收敛.

错的.级数收敛分为两种,条件收敛与绝对收敛.一个收敛的级数,若它的绝对值级数也收敛,则我们称之为绝对收敛的级数,否则,我们称之为条件收敛的级数.所以绝对收敛只是收敛的子集.例:考虑级数(Sigma)n

条件收敛级数与绝对收敛级数的一个问题

①前一个级数的绝对值级数【1/(n*n)】是收敛的,故前一个级数绝对收敛②后一个级数本身是收敛的,但是它的绝对值级数【1/n】是发散的,故后一个级数是条件收敛①②都是根据条件收敛、绝对收敛的定义得到的

证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛

∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

请举一个正项数列{an} lim an=0,但是(-1)^n*an的求和级数不收敛

a(2n)=1/2^na(2n+1)=1/n这样级数的正部收敛,而负部发散,所以级数发散.(用这种方法可以构造出很多例子)说明交错级数的判别条件还是很重要的.

【无穷级数】正项级数收敛的证明

用比较定理呗,构造一个新级数,b_{2n-1}=0,b_{2n}=a_{2n}.于是∑b_n被收敛级数∑a_n所界定,自然也收敛

正项级数 an 收敛 bn小于等于an 则级数 bn 收敛 怎么证明?

这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,

高数证明题证明:若级数∑un条件收敛,对任意a∈R(包括a=±∞),则适当交换级数∑un的项,可使交换后的新级数收敛于a

在证明这个命题之前,我们先介绍一个关于正项级数的性质:若发散的正项级数∑Qn的一般项Qn单调递减且有极限limQn=0,则对于任意的ε>0和正整数n,必存在整数p≥0使得∑Qi>ε(注:此处求和指标中

关于正项级数收敛的证明.

我来上个图.再答:再问:原来是用基本不等式,谢谢!再答:不客气

级数收敛

一.易见a_{n+1}/S_n>1/x在区间[S_n,S_{n+1}]上的积分,两边求和,就得到左边的级数大于等于1/x在a_1到正无穷上的积分,当然是发散的.二.用Dirichlet判别法.

一个绝对收敛级数和一个条件收敛级数的和是什么级数

只可能条件收敛an绝对收敛,bn条件收敛an+bn=cn如果cn绝对收敛,那么bn=cn-an绝对收敛,矛盾

一个级数ΣUn收敛,怎么证明它的奇数项ΣU2n-1也收敛?

因为级数收敛,设ΣUn=A.n趋向于无穷大时可以取到所有的2n-1的数值.所以ΣU2n-1=A.得证.

一个函数项级数一致收敛的证明

这个问题实际上是一个充要条件,很多习题书上都有,充分性证明比较容易,直接利用Cauchy收敛准则即可,但是必要性相对比较复杂,一般书上基本都是采用很不常规的一个方法,将x分为三个区间讨论,此种方法不仅

一个级数的一般项趋近于0,该级数的项任意加括号后级数收敛,那么该级数是否收敛

显然收敛的再问:如果没加一般项趋于0,就不一定了吧再答:也一定收敛,因为括号是任意加的

正项级数加括号后收敛,求证,原级数收敛

设正项级数∑{n=1,∞}Un加括号后构成正项级数∑{k=1,∞}Vk(Vk为k个括号求和)Un位于第k个括号中,其中k=k(n)∑{n=1,∞}Un的前n项部分和为Sn∑{k=1,∞}Vk的前k项部

级数的问题:任意项级数收敛则加括号还是收敛?

路过的来给个解释~(我就是无聊了,不用理我)首先,2楼的答案是完全正确的~级数的收敛性就是其部分和序列Sn的收敛性.而带括号的级数部分和序列是不带括号的部分和序列的子列Snk(这个不用解释吧……).如