作业帮 > 综合 > 作业

什么是摩尔定律

来源:学生作业帮 编辑:拍题作业网作业帮 分类:综合作业 时间:2024/05/02 02:48:19
什么是摩尔定律
到底什么是"摩尔定律'"?归纳起来,主要有以下三种"版本":
1、集成电路芯片上所集成的电路的数目,每隔18个月就翻一番.
2、微处理器的性能每隔18个月提高一倍,而价格下降一倍.
3、用一个美元所能买到的电脑性能,每隔18个月翻两番.
以上几种说法中,以第一种说法最为普遍,第二、三两种说法涉及到价格因素,其实质是一样的.三种说法虽然各有千秋,但在一点上是共同的,即"翻番"的周期都是18个月,至于"翻一番"(或两番)的是"集成电路芯片上所集成的电路的数目",是整个"计算机的性能",还是"一个美元所能买到的性能"就见仁见智了.
"摩尔定律"的由来:
"摩尔定律"的"始作涌者"是戈顿·摩尔,大名鼎鼎的芯片制造厂商Intel公司的创始人之一.20世纪50年代末至用年代初半导体制造工业的高速发展,导致了"摩尔定律"的出台.
早在1959年,美国著名半导体厂商仙童公司首先推出了平面型晶体管,紧接着于1961年又推出了平面型集成电路.这种平面型制造工艺是在研磨得很平的硅片上,采用一种所谓"光刻"技术来形成半导体电路的元器件,如二极管、三极管、电阻和电容等.只要"光刻"的精度不断提高,元器件的密度也会相应提高,从而具有极大的发展潜力.因此平面工艺被认为是"整个半导体工业 键",也是摩尔定律问世的技术基础.
1965年4月19日,时任仙童半导体公司研究开发实验室主任的摩尔应邀为《电子学》杂志35周年专刊写了一篇观察评论报告,题目是:"让集成电路填满更多的元件".摩尔应这家杂志的要求对未来十年间半导体元件工业的发展趋势作出预言.据他推算,到1975年,在面积仅为四分之一平方英寸的单块硅芯片上,将有可能密集65000个元件.他是根据器件的复杂性(电路密度提高而价格降低)和时间之间的线性关系作出这一推断的,他的原话是这样说的:"最低元件价格下的理杂性每年大约增加一倍.可以确信,短期内这一增长率会继续保持.即便不是有所加快的话.而在更长时期内的增长率应是略有波动,尽管役有充分的理由来证明,这一增长率至少在未来十年内几乎维持为一个常数."这就是后来被人称为"摩尔定律"的最初原型.
"摩尔定律"的修正
1975年;摩尔在国际电信联盟IEEE的学术年会上提交了一篇论文,根据当时的实际情况,对"密度每年回一番"的增长率进行了重新审定和修正.按照摩尔本人1997年9月接受(科学的美国人)一名编辑采访时的说法,他当年是把"每年翻一番"改为"每两年国一番",并声明他从来没有说过"每18个月翻一番".
然而,据网上有的媒体透露,就在摩尔本人的论文发表后不久,有人将其预言修改成"半导体集成电路的密度或容量每18个月翻一番,或每三年增长4倍",有人甚至列出了如下的数学公式:(每芯片的电路增长倍数)=2(年份-1975)/1.5.这一说法后来成为许多人的"共识",流传至今.摩尔本人的声音,无论是最初的"每一年图一番"还是后来修正的"每两年翻一番"反而被淹没了,如今已鲜有人知.
历史竟和人们开了个不大不小的玩笑:原来目前广为流传的"摩尔定律"并非摩尔本人的说法!
"摩尔定律"的验证
摩尔定律到底准不准?让我们先来看几个具体的数据.1975年,在一种新出现的电荷前荷器件存储器芯片中,的的确确含有将近65000个元件,与十年前摩尔的预言的确惊人地一致!另据Intel公司公布的统计结果,单个芯片上的晶体管数目,从1971年4004处理器上的2300个,增长到1997年Pentium II处理器上的7.5百万个,26年内增加了3200倍.我们不妨对此进行一个简单的验证:如果按摩尔本人"每两年翻一番"的预测,26年中应包括13个翻番周期,每经过一个周期,芯片上集成的元件数应提高2n倍(0≤n≤12),因此到第13个周期即26年后元件数应提高了212=4096倍,作为一种发展趋势的预测,这与实际的增长倍数3200倍可以算是相当接近了.如果以其他人所说的18个月为翻番周期,则二者相去甚远.可见从长远来看,还是摩尔本人的说法更加接近实际.
也有人从个人计算机(即PC)的三大要素--微处理器芯片、半导体存储器和系统软件来考察摩尔定律的正确性.微处理器方面,从1979年的8086和8088,到1982年的80286,1985年的80386,1989年的80486,1993年的Pentium,1996年的PentiumPro,1997年的PentiumII,功能越来越强,价格越来越低,每一次更新换代都是摩尔定律的直接结果.与此同时PC机的内存储器容量由最早的480k扩大到8M,16M,与摩尔定律更为吻合.系统软件方面,早期的计算机由于存储容量的限制,系统软件的规模和功能受到很大限制,随着内存容量按照摩尔定律的速度呈指数增长,系统软件不再局限于狭小的空间,其所包含的程序代码的行数也剧增:Basic的源代码在1975年只有4,000行,20年后发展到大约50万行.微软的文字处理软件Word,1982年的第一版含有27,000行代码,20年后增加到大约200万行.有人将其发展速度绘制一条曲线后发现,软件的规模和复杂性的增长速度甚至超 过了摩尔定律.系统软件的发展反过来又提高了对处理器和存储芯片的需求,从而刺激了集成电路的更快发展.
这里需要特别指出的是,摩尔定律并非数学、物理定律,而是对发展趋势的一种分析预测,因此,无论是它的文字表述还是定量计算,都应当容许一定的宽裕度.从这个意义上看,摩尔的预言实在是相当准确而又难能可贵的了,所以才会得到业界人士的公认,并产生巨大的反响.
"摩尔定律"的变种
摩尔定律的响亮名声,令许多人竞相仿效它的表达方式,从而派生、繁衍出多种版本的"摩尔定律",其中如:
摩尔第二定律:摩尔定律提出30年来,集成电路芯片的性能的确得到了大幅度的提高;但另一方面,Intel高层人士开始注意到芯片生产厂的成本也在相应提高.1995年,Intel董事会主席罗伯特·诺伊斯预见到摩尔定律将受到经济因素的制约.同年,摩尔在《经济学家》杂志上撰文写道:"现在令我感到最为担心的是成本的增加,…这是另一条指数曲线".他的这一说法被人称为摩尔第二定律.
新摩尔定律:近年来,国内IT专业媒体上又出现了"新摩尔定律" 的提法,则指的是我国Internet联网主机数和上网用户人数的递增速度,大约每半年就翻一番!而且专家们预言,这一趋势在未来若干年内仍将保持下去.
"摩尔定律"的终结
摩尔定律问世至今已近40年了.人们不无惊奇地看到半导体芯片制造工艺水平以一种令人目眩的速度提高.目前,Intel的微处理器芯片Pentium 4的主频已高达2G(即1 2000M),2011年则要推出含有10亿个晶体管、每秒可执行1千亿条指令的芯片.人们不禁要问:这种令人难以置信的发展速度会无止境地持续下去吗?
不需要复杂的逻辑推理就可以知道:芯片上元件的几何尺寸总不可能无限制地缩小下去,这就意味着,总有一天,芯片单位面积上可集成的元件数量会达到极限.问题只是这一极限是多少,以及何时达到这一极限.业界已有专家预计,芯片性能的增长速度将在今后几年趋缓.一般认为,摩尔定律能再适用10年左右.其制约的因素一是技术,二是经济.
从技术的角度看,随着硅片上线路密度的增加,其复杂性和差错率也将呈指数增长,同时也使全面而彻底的芯片测试几乎成为不可能.一旦芯片上线条的宽度达到纳米(10-9米)数量级时,相当于只有几个分子的大小,这种情况下材料的物理、化学性能将发生质的变化,致使采用现行工艺的半导体器件不能正常工作,摩尔定律也就要走到它的尽头了.
从经济的角度看,正如上述摩尔第二定律所述,目前是20-30亿美元建一座芯片厂,线条尺寸缩小到0.1微米时将猛增至100亿美元,比一座核电站投资还大.由于花不起这笔钱,迫使越来越多的公司退出了芯片行业.看来摩尔定律要再维持十年的寿命,也决非易事.
然而,也有人从不同的角度来看问题.美国一家名叫CyberCash公司的总裁兼CEO丹·林启说,"摩尔定律是关于人类创造力的定律,而不是物理学定律".持类似观点的人也认为,摩尔定律实际上是关于人类信念的定律,当人们相信某件事情一定能做到时,就会努力去实现它.摩尔当初提出他的观察报告时,他实际上是给了人们一种信念,使大家相信他预言的发展趋势一定会持续.