求lim(x->1)(1-X)tan(πx/2)的极限
来源:学生作业帮 编辑:拍题作业网作业帮 分类:数学作业 时间:2024/10/11 02:01:55
求lim(x->1)(1-X)tan(πx/2)的极限
因为当x→1时,cot(πx/2)=tan(π/2-πx/2)=tan[(1-x)π/2]~(1-x)π/2
所以lim(1-x)tan(πx/2)=lim(1-x)/cot(πx/2)
=lim(1-x)/[(1-x)π/2]=2/π
解释下这个cot(πx/2)=tan(π/2-πx/2)=tan[(1-x)π/2]~(1-x)π/2
洛必达法则还没有学
因为当x→1时,cot(πx/2)=tan(π/2-πx/2)=tan[(1-x)π/2]~(1-x)π/2
所以lim(1-x)tan(πx/2)=lim(1-x)/cot(πx/2)
=lim(1-x)/[(1-x)π/2]=2/π
解释下这个cot(πx/2)=tan(π/2-πx/2)=tan[(1-x)π/2]~(1-x)π/2
洛必达法则还没有学
lim(x->1)(1-x)tan(πx/2)
=lim(y->0)[y*tan(π/2-πy/2)] (用y=1-x代换)
=lim(y->0)[y*ctan(πy/2)]
=lim(y->0)[y*cos(πy/2)/sin(πy/2)]
=lim(y->0){[(πy/2)/sin(πy/2)]*[(2/π)*cos(πy/2)]}
={lim(y->0)[(πy/2)/sin(πy/2)]}*{lim(y->0)[(2/π)*cos(πy/2)]}
=1*(2/π) (应用重要极限lim(x->0(sinx/x)=1)
=2/π.
=lim(y->0)[y*tan(π/2-πy/2)] (用y=1-x代换)
=lim(y->0)[y*ctan(πy/2)]
=lim(y->0)[y*cos(πy/2)/sin(πy/2)]
=lim(y->0){[(πy/2)/sin(πy/2)]*[(2/π)*cos(πy/2)]}
={lim(y->0)[(πy/2)/sin(πy/2)]}*{lim(y->0)[(2/π)*cos(πy/2)]}
=1*(2/π) (应用重要极限lim(x->0(sinx/x)=1)
=2/π.
高数极限习题求lim(x->1)(1-X)tan(πx/2)的极限
求lim(x->1)(1-X)tan(πx/2)的极限
求x→1时lim(2-x)^tan(πx)/2的极限
lim(1+tan×)^1/x求极限
几道求极限的高数题,lim1/x(tanπx/(2x+1)) x→∞lim x(x^x-1)x→0+lim(x^x^x-
求lim(1-x)tan(∏x/2),x→1的极限
利用简单方法求极限.x趋近于1,lim(1-x)tan*π/2*x
当x趋向1时,求极限lim(1-x)tan(πx/2),..
利用变量替换y=x-1求极限lim(x-1)tan(πx/2) x-->1
求lim(x趋近于π)(π-x)tan(x/2)的极限?
求极限lim(x→-1) (x的立方+1)/[tan(x+1)]
求极限.lim x->1 (x-1)*tan((pai*x)/2)