作业帮 > 数学 > 作业

证明Cos^A-Sin^A=1-2Sin^A=2Cos^A-1=cos^a-sin^a

来源:学生作业帮 编辑:拍题作业网作业帮 分类:数学作业 时间:2024/04/28 10:20:09
证明Cos^A-Sin^A=1-2Sin^A=2Cos^A-1=cos^a-sin^a
根据余弦2倍角公式
cos(a+b)=cosa*cosb-sina*sinb
cos2a=cos(a+a)=cosa*cosa-sina*sina=cos²a-sin²a
再根据三角函数的恒等式sin²a+cos²a=1进行换算
cos²a-sin²a=1-sin²a-sin²a=1-2sin²a
cos²a-sin²a=cos²a-(1-cos²a)=2cos²a-1