已知函数f(x)=ax2+(a-1)x+b的最小值为-1,且f(0)=-1.
来源:学生作业帮 编辑:拍题作业网作业帮 分类:综合作业 时间:2024/11/01 07:39:23
已知函数f(x)=ax2+(a-1)x+b的最小值为-1,且f(0)=-1.
(1)求f(x)的解析式;
(2)在给出的坐标系中画出y=|f(x)|的简图;
(3)若关于x的方程|f(x)|2+m|f(x)|+2m+3=0在[0,+∞)上有三个不同的解,求实数m的取值范围.
(1)求f(x)的解析式;
(2)在给出的坐标系中画出y=|f(x)|的简图;
(3)若关于x的方程|f(x)|2+m|f(x)|+2m+3=0在[0,+∞)上有三个不同的解,求实数m的取值范围.
(1)∵f(0)=-1,∴b=-1.
由题意得a>0,∵f(x)=ax2+(a-1)x-1的最小值为-1,∴
−4a−(a−1)2
4a=-1,∴a=1.
∴f(x)=x2-1.
(2)函数y=|f(x)|=|x2-1|的图象如图:
(3)令|f(x)|=t,t∈[0,+∞),
由题意可知,方程t2+mt+2m+3=0在(0,1]和(1,+∞)上各有一解.
令h(t)=t2+mt+2m+3.
①当方程t2+mt+2m+3=0有一个根为1时,
令h(1)=0,m=-
4
3.而当m=-
4
3时,t=
1
3或t=1,不符题意,舍去.
②当方程t2+mt+2m+3=0没有根为1时,
由
h(0)>0
h(1)<0 解得-
3
2<m<-
4
3,∴实数m的取值范围为(-
3
2,-
4
3).
由题意得a>0,∵f(x)=ax2+(a-1)x-1的最小值为-1,∴
−4a−(a−1)2
4a=-1,∴a=1.
∴f(x)=x2-1.
(2)函数y=|f(x)|=|x2-1|的图象如图:
(3)令|f(x)|=t,t∈[0,+∞),
由题意可知,方程t2+mt+2m+3=0在(0,1]和(1,+∞)上各有一解.
令h(t)=t2+mt+2m+3.
①当方程t2+mt+2m+3=0有一个根为1时,
令h(1)=0,m=-
4
3.而当m=-
4
3时,t=
1
3或t=1,不符题意,舍去.
②当方程t2+mt+2m+3=0没有根为1时,
由
h(0)>0
h(1)<0 解得-
3
2<m<-
4
3,∴实数m的取值范围为(-
3
2,-
4
3).
已知函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R时,函数f(x)的最小值是f(-1)=0.
已知函数f(x)=ax2(平方)+bx+1(a.b为实数),若f(-1)=0且函数f(x)的值域为[0,+&)(无穷大)
已知函数f(x)=ax3-6ax2+b(x∈[-1,2])的最大值为3,最小值为-29,求a、b的值.
已知二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0),f(-2)=f(0)=0,f(x)的最小值为-1.
已知函数f(x)=ax2+3a为偶函数,其定义域为[a-1,2a],求f(x)的最大值与最小值.
已知a,b为常数,且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有两个相等的实数根. (1)求函数f(
已知函数f(x)=x3-32ax2+b(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最小值为-2.
已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件f(1+x)=f(1-x),且方程f(x)=x有等根
已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x+1)=f(1-x)且方程f(x)=x有等根
已知函数f(x)=x3-ax2+bx+3(a,b∈R),若函数在区间[0,1]上单减,求a2+b2的最小值
已知函数f(x)=ax2-2x,在x∈[0,1]时,求f(x)的最小值.
导数 已知x属于(0,1),f(x)=x3+ax2+x+1,--------*已知函数f(x)有且只有一个极值点,求a的