(1 x)ln(1 x)展开成x的幂级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/16 04:24:41
将f(x)=ln(1-x)展开成x的幂级数,则展开式为

因为ln(1+x)=x-x^2/2+x^3/3-...+(-1)^(n+1)x^n/n+...所以f(x)=ln(1-x)=ln(1+(-x))=(-x)-(-x)^2/2+(-x)^3/3+...+

请问泰勒展开的唯一性是什么?能结合x*ln(1+X)

就假设f能分解成f=a0+a1(x-x0)+a2(x-x0)^2+……,又能分解成f=b0+b1(x-x0)+b2(x-x0)^2+……,两式相减,有a0-b0+(a1-b1)(x-x0)+(a2-b

将函数f(x)=ln(1+x) 展开成x的幂级数.

解题过程在图片中哦...

泰勒展开ln(1+x^2)

先求ln(1+x)在0处的泰勒展式,这个你不能不会.然后把式子里面的x替换成x^2就好了.看到我得先后顺序没?你看看书.,上面得例题,老兄“他展开时的各级导数不一样的”发现你似乎对泰勒级数不太了解.啊

f(x)=(x^2)*[ln(1+x)]的n阶麦克劳林展开是什么?

∵ln(1+x)=∑(-1)^(n-1)x^(n+1)/n∴f(x)=∑(-1)^(n-1)x^(n+3)/n再问:谢谢!可是我的课本讲ln(1+x)的麦克劳林展开式是:x-(x^2)/2+(x^3)

把f(x)=(1+x)ln(1+x)展开成麦克劳林级数

再问:第三行最后的那个+x是怎么算出来的啊?再答:将In(1+x)展开,第一项就是x,单独的提出来。这样其余的项就可以与前面xIn(1+x)的合并。

ln(1-x)的泰勒级数展开是什么?

然后你把图中的x用-x代替即可,容易发现所有的项都变成了负号

将函数f(X)=(1+x)ln(1+x)-x(其中x的绝对值小于1)展开成x的幂级数

1、套公式将ln(1+x)展开2、将上式两边乘以x得到xln(1+x)的展开式3、将ln(1+x)与xln(1+x)的展开式错位相加,得到(1+x)ln(1+x)的展开式4、最后,减去x就得到结果.具

将f(x)=ln(1+x)/(1-x)展开成x的幂级数

一般的,f(x)在x=x0处展开成幂级数为:f(x)=f(x0)+f(x0)'(x-x0)+f(x0)''(x-x0)²/2+f(x0)"'(x-x0)³/3!+……+f(x0)(

求下列函数展开成x-1的幂级数,并求其收敛域 ln(x+2)

令t=x-1则x=t+1ln(x+2)=ln(t+3)=ln3+ln(1+t/3)由ln(1+x)=x-x²/2+x^3/3-,收敛域-1

将函数f(X)=(1+x)ln(1+x)展开成x的幂级数

f(X)=(1+x)ln(1+x)=ln(1+x)+xln(1+x)ln(1+x)=x-x^/2+x^3/3-……+(-1)^nx^n/n代入化简即可.

高数的,f(x)=(1-x)ln(1+x)展开成x的幂级数

令g(x)=ln(1+x),g(0)=0;[ln(1+x)]'=1/(1+x),g'(0)=1;[ln(1+x)]''=-1/(1+x)^2,g''(0)=-1;[ln(1+x)]'''=2/(1+x

f(x)=(1+x)ln(1+x)展开成x的幂级数

f′(x)=ln(1+x)+1=[∑(n从1到∞)(-1)^(n-1)x^n/n]+1f(x)=∫(0到x)f′(x)dx+f(0)=∫(0到x){[∑(n从1到∞)(-1)^(n-1)x^n/n]+

展开已知函数为X的幂级数 ln根号(1+X)/(1-x)

定义域为-1再问:答案用级数的方式表示是什么我算出来的和课后答案不一样再答:上面就是幂级数的方式呀再问:f(x)每项的通项公式?再答:通项为x^(2n-1)/(2n-1)

将函数ln(1+x-2x2)展开成x的幂级数.

因为ln(1+x-2x2)=ln(1-x)+ln(1+2x),故只需计算ln(1-x)以及ln(1+2x)的幂级数展开式即可.在−1≤x<1中,ln(1−x)=∞n=1(−1)n−1(−x)nn=∞n

(1+x)ln(1+x)展开成x的幂级数,

ln(1+x)=∫[1/(1+x)]dx=∫(1-x+x^2-x^3+……+x^n+……)dx=x-(x^2/2)+(x^3/3)-(x^4/4)+……+[(-1)^(n+1)](x^n/n)+……(

ln(1—x)/(1+x)的幂函数如何展开

数,所以m^2-2m-3为偶数在区间(0,+∞)是减函数,所以m^2-2m-3<0解得m^2-2m-3=-4f(x)=x^-4

将函数f(X)=ln(1+x+x^2+x^3)展开成x的幂级数

原式=ln(1+x)+ln(1+x^2)=sigma[(-1)^n*x^n/n!]+sigma[(-1)^n*(x^2)^n/n!]=sigma{(-1)^n*[x^n+x^(2n)]/n!}其中,s