X服从正态分布(0,1)D(X1-2X2)怎么算

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/27 14:14:42
正态分布简单性质X,Y均服从参数为0,2的正态分布,X-2Y显然也服从正态分布,那么X-2Y的参数是多少?

在X与Y相互独立的条件下才可以说X-2Y也服从正态分布.其参数为(独立条件下)均值E(X-2Y)=EX-2EY=0方差D(X-2Y)=DX+4DY=10,即X-2Y服从N(0,10)

概率论问题求问.1比如X Y都服从某正态分布求Z=2X+3Y服从什么样的正态分布?2XY相互独立D(X)=4 D(Y)=

问题1你计算一下Z的期望和方差就行因为正态分布两个参数的意义就是期望和方差,所以问一个随机变量是什么杨的正态分布其实就是问他的期望和方差是多少的问题问题2方差的性质如果XY相互独立则D(aX+bY)=

设随机变量X,Y独立都服从标准正态分布N(0,1),则X方/Y方服从的分布为

X²/1,Y²/1均服从自由度为1的χ²分布.按照F分布的定义,(X²/1)/(Y²/1)=X²/Y²,服从自由度为(1,1)的F

概率论与数理统计设随机变量X服从正态分布N(0,1),Y服从正态分布N(0,1),且X,Y相互

设A=E(X^2/(X^2+Y^2)),B=E(Y^2/(X^2+Y^2)),A+B=1,A-B=0.所以...A=0.5

X,Y相互独立.他们都服从标准正态分布N(0,1).证明Z=X^2+Y^2服从λ=1/2的指数分布

有没有学过特征函数?没有的话很难解释...第一问服从自由度为2的卡方分布,也就是Gamma(1,1/2)分布,写出密度函数就是指数分布第二问用正态分布线性组合性质直接就有了,用特征函数很好解释

设随机变量X服从正态分布,且X~N(-3,4),则连续型随机变量Y=()服从标准正态分布N(0,1)

Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)

已知均值(x)和标准差(d),能否求出正态分布的概率值(数据默认是服从正态分布)

这个直接套公式行了,得到的数是要查表的...挺好理解的吧,哪里不懂啊...

X服从正态分布,X的平方服从什么分布

X服从正态分布,则X的平方服从卡方分布.

设二维随机变量(X,Y )服从二维正态分布N(0,0,1,1,0)求P(X+Y0)

X,N(0,0,1,1,0)说明X,Y独立同分布N(0,1)fX(x)=φ(x).P(X+Y0)=P(X>0,Y>0)+P(X

设二维随机变量(x,y)服从二维正态分布,且E(X)=0,E(Y)=0,D(X)=16,D(Y)=25

f(x,y)~(u1,u2,σ1²,σ2²,ρ)其中u1=0,u2=0,σ1²=16,σ2²=25,ρ=Cov(x,y)=12把数字代入即可.再问:这个公式好长

设随机变量X服从X(μ,d^2)【正态分布】d>0,且y^2+y+X=0有实数跟为0.5,则μ=?

题目少字了吧?应该是y^2+y+X=0有实数根的概率为0.5吧?有实数根等价于1-4X≥0等价于X≤1/4所以X≤1/4的概率为0.5=Φ(0)所以(1/4-μ)/d=0μ=1/4

已知随机变量X服从正态分布N(0,1),求E(X^2)、E(X^3)与E(X^4)?

X~N(0,1)则Y=X^2~~卡方分布X^2(1)所以EX^2=1E(X^4)=DY+(EY)^2=2+1=3E(X^3)=0.pdf概率密度函数关于y对称.当然,也是可以像沙发同志那样做.不过有点

设连续随机变量X服从标准正态分布N(0,1),求Y=1-2X的概率密度函数

正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)

x,y互相独立且服从标准正态分布,则f(x,y)也服从正态分布吗?

1.独立的正态分布的联合分布也服从正态分布.2.没关系.3.去掉独立后,结论不成立.4.由分布密度来判断是否是二维正态分布.

随机变量X服从正态分布N(u1, ),Y服从正态分布N(u2, ),X与Y独立,则X+Y服从

(u1+u2,σ1^2+σ2^2)^代表平方哈,这是正态分布的可加性吧再问:那X-Y呢?谢谢你啊,要考试了其实是想知道X+Y与X-Y的方差相不相等。麻烦帮个忙再答:相等的,当X,Y不独立,D(X+(或

请问随机变量X服从正态分布

就是满足正态分布的性质.

设X服从标准正态分布X~N(0,1),P(X≤0)=( ) A.0 B.1 C.0.5 D.无法确定

P(X≤0)=0.5,因为正态分布的均值是0,则图像关于Y轴对称,也就是Y轴左右两边的面积都是0.5.由于A、B互斥,则A发生B一定不发生,也就是说A发生B不发生的概率=A发生的概率=1/4.正态分布