n阶对称矩阵向量空间的基

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:06:31
设A,B为两个n阶正交矩阵,证明:AB-1的行向量构成n维欧式空间Rn的标准正交基

两个正交矩阵的乘积仍是正交矩阵,正交矩阵的逆仍是正交矩阵.一个n阶矩阵的A行(列)向量可以构成Rn的标准正交基的充要条件是A是正交矩阵.具体的说明,你自己补全下.

求助关于矩阵 N维向量空间

1.非奇异矩阵NXN构成了N的平方维向量空间错.零元,即零矩阵,不在此集合中2.奇异矩阵NXN构成了N的平方维向量空间错.对加法不封闭比如:1000+0001=1001

设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.

直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.

设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵

B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)

验证n阶对称阵,对矩阵加法及矩阵的数乘构成数域R上的线性空间

因为矩阵的加法运算满足交换,结合,有零矩阵,有负矩阵矩阵的数乘运算也满足相应的4条运算性质所以若证明n阶对称阵对矩阵加法及矩阵的数乘构成数域R上的线性空间,只需证明n阶对称阵对矩阵加法及矩阵的数乘运算

一、设V是所有n阶方阵组成的向量空间,M和N分别是由n阶上三角矩阵和和下三角矩阵组成的集合.

证:(1)若a∈M,则a为n阶方阵,所以a∈V,所以M是V的子空间,同理可证N是V的子空间.(2)题目出错了!因为M∩N={n阶对角阵}不为0,所以M+N不为直和.且维(M)=维(N)=n*(n+1)

证明:所有N阶对称矩阵组成(N^2+2N)/2维线性空间;所以反N阶对称矩阵组成(N^2-N)/2维线性空间;

n阶对称矩阵的主控元素是主对角线上方(含主对角线)的元素记Eij为第i行第j列元素为1,第j行第i列元素为1,其余全是0的n阶矩阵则Eij,i

设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ

已知n维列向量α是A的属于特征值λ的特征向量,则:Aα=λα,(P-1AP)T=PTA(PT)-1,等式两边同时乘以PTα,即:(P-1AP)T(PTα)=PTA[(PT)-1PT]α=PTAα=λ(

设a1,a2,a3,...an是n维列向量空间Rn的一个基,A是任意一个n阶可逆矩阵,证明:n维列向量组

证:设k1Aa1+k2Aa2+...+knAan=0则A(k1a1+k2a2+...+knan)=0因为A可逆,等式两边左乘A^-1得--这一步是关键k1a1+k2a2+...+knan=0又由已知a

设a1,a2,...,an是n维列向量空间R^n的一个基,A是任意一个n阶可逆矩阵,证明:n维列向量组Aa1,Aa2..

在n维欧氏空间中,任意n个线性无关的向量都可以作为空间的一组基在本题中,可逆矩阵的n个列向量线性无关,故可作为一组基

矩阵的行向量是空间的一组基,那么列向量也是一组基?

矩阵的行向量是空间的一组基,这句话意思是此矩阵为满秩矩阵,假设列向量不是一组基,那么至少有一向量可以被其他线性表出.这时可以进行列变换就会化成至少有一行全为0的矩阵,显然此矩阵的秩不是满秩的.矛盾所以

证明:n阶矩阵A对称的充分必要条件是A-A'对称

证明:如果A对称,则A-A'=0对称.如果A-A'对称,又A+A‘对称.所以A=1/2(A-A’)+1/2(A+A’)对称.

n维欧氏空间的对称变换T在标准正交基下的矩阵B即是正定矩阵又是正交矩阵,证明:T是恒等变换

利用正交矩阵的特征值的模为1,正定矩阵的特征值为大于0的实数得到B的特征值都是1正定矩阵可对角化,有B只能与E相似所以B=ET是恒等变换命题成立

高等代数 向量空间由3阶对称矩阵构成的子空间的维数是( );(A)9 (B) 6 (C)2 (D)3

这个题选B,三阶矩阵可以设为(aij)3*3,总共有aij=aji三个等式,有9个未知数,3个等式,那么解空间的维度就是6

证明:n阶矩阵A对称的充分必要条件是A-A'对称

证明:如果A对称,则A-A'=0对称.如果A-A'对称,又A+A‘对称.所以A=1/2(A-A’)+1/2(A+A’)对称.

线性空间的证明检验集合(n阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘)是否构成实数域R上的线性空间

反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩