若liman=a,则lima2n 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/28 02:41:46
微积分证明题证明:若limAn=a,则lim|An|=|a|,但反之不正确,试举例说明.但a=0时,反之也成立,试证明之

【一】证明:若limAn=a,则lim|An|=|a|.证明:①对任意ε>0由:lim(n->∞)an=a,对此ε>0,存在N∈Z+,当n>N时,恒有:|an-a|N时,④||an|-|a||∴lim

lim2nan=1(n→∞),且liman(n→∞)存在,则lim(1-n)an(n→∞)=多少

根据题意,lim(nan)(n→∞)=1/2原式展开=lim(-nan)(n→∞)+lim(an)(n→∞)=(-1/2)+lim(an)(n→∞)=(-1/2)+lim(nan/n)(n→∞)=(-

若liman=a求证lim[(a1+a2···+an)/n]=a

这个题目的证明是从结论入手的.也就是说通过把要证的部分分成两份,让每一部分都小于z/2,它们加起来小于z,从而完全吻合任意z大于0,存在N,当n大于N时|(a1+a2+……+an)/n-a|=

极限的判断题1)若limAn

两个都是错的1)举个例子取An=e的(-n/10)次方,Bn=arctan(n),lim(An)=0但当n=1时An=0.9>Bn=0.78所以错了limAn

证明:若pk>o(k=1,2,……)(p是下标)且 lim[pn/p1+p2+……+pn]=0,liman=a(都是n→

把你要求极限的那个式子减去a,|p1an+p2a(n-1)+……+pna1]/(p1+p2+……pn)-a|

用极限定义证明,如果liman=a,那么lim1

根据极限定义,对任意正数ε,一定存在整数M,当n>M时,总有|an-aM|

设an,bn都是等差数列,其中a1=3,b1=2,b2是a2与a3的等差数列,liman/bn=1/2,求lim(1/a

LZbn的通项公式求错了,bn=4n-2而不是bn=4n-1;你验证下b1就知道了所以1/anbn=1/[2*(2n-1)(2n+1)]=1/4*[1/(2n-1)-1/(2n+1)]所以1/a1b1

若liman=a,则lim|an|=|a|

liman=a根据定义:任意ε>0,存在N>0,使当n>N,有|an-a|0,使当n>N,有||an|-|a||

设数列{an}{bn}均为等差数列,公差都不为0,无穷数列liman/bn=3,则无穷数列limb1+b2+...+bn

an=a1+(n-1)mbn=b1+(n-1)p则liman/bn=m/p=31im(b1+b2+...+bn)/n*a3n=lim(nb1+n(n-1)p/2)/n*(a1+(3n-1)m)=p/6

已知数列{an}、{bn}都是公差不为零的等差数列,且liman/bn=3,求lim(b1+b2+……b3n)/(n*a

设{an}公差为d,{bn}公差为d'lim(an/bn)=lim[(a1+(n-1)d]/[b1+(n-1)d']=lim[(a1-d)+nd]/[(b1-d')+nd']=lim[(a1-d)/n

数列 设数列{an},a1>0,an=根号[3a(n-1)+4],n-1是下标,证明:|an-4|=2);liman=4

这是一个很好的题目.对于数列{an},递推关系an=√(3a(n-1)+4)虽然明确,但首项a1不明确,所以该数列是不确定的,通常需要讨论.不难发现,当a1=4时,a2=a3=...=an=4,表明此

用极限定义证明若liman=A则lim根号an=根号A

若是知道不等式:|根号(a)-根号(b)|0,存在N,当n>N时,有|an-a|N时,有|根号(an)-根号(a)|N时,有0N时,有|an-a|N时,有|根号(an)-根号(a)|=|an-a|/[

设a1>0,an+1=1/2(an+1/an)(n=1,2……)问数列{an}的极限是否存在,若存在,求liman

首先证明:当n>1时an>=1,证明如下:an+1=1/2(an+1/an)>=根号[an*(1/an)]=1说明{an}有界.上面用了这个不等式:(a+b)/2>=根号(ab)其次证明其当n>1时单

数列极限问题两个:1.已知LimAn=a,求证:LimAn+p=a,其中p是固定自然数.n→∞ n→∞ 2.求证;数列{

1、证明:因为limAn=a,所以任给t>0,存在正整数N,当n>N时总有│An-a│K=N-p时即n+p>N时总有│An+p-a│0,存在正整数N1,当n>N1时总有│B2n-b│0,存在N2,当n

第一个:设liman=A(n为下标,趋近于无穷大),那么有

详细答案请看图片,如有不明白可联系我.

级数a2n-1+a2n收敛 且 liman=0,证级数an收敛

Sn是级数的部分和,则S(2n)有极限,记为limS(2n)=s.于是limS(2n+1)=limS(2n)+a(2n+1)=limS(2n)+lima(2n+1)=s.故级数收敛.