秩为r的矩阵,它的任意r阶行列式等于多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/30 15:44:38
设n阶实对称矩阵A的秩为r(r

可以用Gauss消去法证明可以合同对角化,然后只要加一句可逆变换不改变秩即可.如果还不会看下面的提示:取一个非零2阶主子式,若其对角元为0则用[1,1;-1,1]作用上去,这样它至少一个对角元非零.不

线性代数 矩阵的秩是否存在这样一种矩阵,使得它同时满足以下条件:(1)它存在r阶非零子式;(2)它的所有r+1阶子式全为

不存在这种矩阵,如果它存在r阶非零子式且它的所有r+1阶子式全为0,则该矩阵的秩为r,r也是最大阶不等于零的子式的阶.此时它的所有r+2阶子式均为零;因为所有r+1阶子式全为0,则比r+1阶大的子式也

假设s×n矩阵A的秩为r.证明Ax=θ的任意n-r个线性无关的解都是其基础解析.

首先有结论:Ax=0的基础解系含n-r个解向量.证明:设a1,...,an-r是Ax=0的任意n-r个线性无关的解要证a1,...,an-r是Ax=0的基础解系,只需证Ax=0的任一解向量b都可由a1

证明任意一个秩为r的的矩阵A可以表示为r个秩为1的矩阵之和,而不能表示为r-1个秩为1的矩阵之和.

我来替刘老师回答吧对于A=PDQ^T,其中D=diag{d_1,d_2,...,d_n}把P和Q按列分块成P=[p_1,p_2,...,p_n],Q=[q_1,q_2,...,q_n],那么用分块矩阵

已知A为m*n阵B为n*m矩阵 证明r(AB)≦min{r(A),r(B)},r表示矩阵的秩

将A进行列分块为(a1,a2,a3,...ap),于是AB=b11a1+b21a2+...bp1ap+b12a1+b22a2+...+...+bpnap所以AB可以由A的p个向量组线性线性表示,即r(

线性代数.证明:秩为r的矩阵可表示为r个秩为1的矩阵之和

秩为r的矩阵表示成向量的形式[A1A2A3.Ar...AN],不妨射前r个线形无关,后N-r个可以被前r个线形表示.此矩阵[A1A2A3.Ar...AN]=∑[00...Ai00...x1i*Aix2

证明:秩为r的矩阵可表示为r个秩为1的矩阵之和

这个题目比较简单我们设矩阵的阶数是n那么它的秩为r,设X1,X2,X3,..Xr是它的极大无关组那么我们知道X(r+1),...Xn都是可以由上面线性表式出来的把它们写出来就后那么利用矩阵的拆分可以知

证明:秩为r的对称矩阵可表为r个秩为1的对称矩阵之和

证明:对称矩阵都可以正交相似对角化,即存在正交矩阵O使得A=O'*diag{a1,a2,...,an}*O.rk(A)=r说明对角元a1,a2,...,an中有r个非零,不妨设为前r个,则A=O'*d

线性代数求矩阵的秩设ABC为三个N阶矩阵,且|AB|不等于0,判断 结论R(ABC)=?R(A) ,R(ABC)=?R(

我来分析一下:|AB|≠0,即AB可逆,(把AB做为整体)这样R(ABC)=R(C)或R(CAB)=R(C)其他的都不确定 见公式里的第四条

一个基础的线性代数问题 .如果一个矩阵A的秩为r,有没有可能它的1~r-1阶子式都为0?

不可能它的1~r-1阶子式都为0.因为如果它的1~r-1阶子式都为0,则它的r阶子式按行列式的展开定理,可用某一行所有元素与它的代数余子式的乘积之和,而它的代数余子式都是r-1阶子式,故它的r阶子式也

判断题:若矩阵A的秩为r,则A中任意r+1阶子式都为0.

这是对的知识点:1.若A中有非零的r阶子式,则r(A)>=r2.若A的所有r+1阶子式都为0,则r(A)

问个线性代数题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×r矩阵B与秩为r的r×n矩阵C使A=BC

这个叫做矩阵的满秩分解,《矩阵论》上的定理.证明:A是m×n矩阵,R(A)=r,则A一定能通过初等行列变换变成如下矩阵100...00010...00001...00...000...00就是左上角是

设N*M阶矩阵A的秩为R,证明:存在秩为R的N*R阶矩阵P及秩为R的R*M阶矩阵Q,使A=PQ

取可逆阵X和Y使得A=X*diag{I_R,0}*Y然后P取成X的前R列,Q取成Y的前R列就行了再问:大神,本人愚钝,表示完全看不懂啊,可以说的详细一点吗。。再答:如果第一行不懂就去看教材,这是基本结

判断题:若矩阵A的秩为r,矩阵A中任意r阶子式不等于0

错误.如:123401340000秩为2.但2阶子式3434等于0.满意请采纳^_^.

矩阵乘积的秩设A,B为n阶矩阵,证明:r(AB)+n≥r(A)+r(B)备用符号≥≤><≠

考察I00AB利用初等变换I00ABI-B0ABI-BA0再由秩的定义容易说明它的秩不小于0-BA0的秩即可.

(ii) 设A,B为n阶方阵,r(AB)=r(B),证明对于任意可以相乘的矩阵C均有r(ABC)=r(BC).

证明:分两步(1)ABX=0与BX=0同解显然,BX=0的解都是ABX=0的解所以BX=0的基础解系可由ABX=0的基础解系线性表示.由已知r(B)=r(AB)所以两个基础解系所含向量个数相同故两个基

证明:秩为r的矩阵可以表示为r个秩为1的矩阵之和

因为R(A)=r,所以可以用一系列的行初等变换把A化为行阶梯形B,即存在可逆阵P,使PA=B;B中只有r行含非零元素,B可以写成r个矩阵的和B=C1+C2+…+Cr,其中Ck(1≤k≤r)的第k行是B

n阶实对称幂等矩阵A(即A2=A)它的秩为r,求标准型

设a是A的特征值则a^2-a是A^2-A的特征值因为A^2-A=0所以a^2-a=0所以a=1或a=0即A的特征值只能是1或0.又因为A为实对称矩阵,所以A必可正交对角化即存在正交矩阵T满足T^-1A