曲线y=sinx绕x一周所得图形的容积

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/01 19:41:52
曲线y-1=z绕Y轴旋转一周所得的曲面方程.

这是旋转曲面f(y,z)=0所以旋转曲面是f(+-√(x^2+y^2),z)=0所以曲面是x^2+y^2=(z^2+1)^2

求曲线y=x^2与直线y=2x所围平面图形绕x轴旋转一周所得旋转体的体积

求曲线y=x²与直线y=2x所围平面图形绕x轴旋转一周所得旋转体的体积由x²-2x=x(x-2)=0,得x₁=0,x₂=2;即直线与抛物线相交于O(0,0)

求曲线方程y=sinx,0≤ x≤π与y=0所围成的图形绕y轴旋转一周所得的旋转体的体积

你还是说绕哪个轴旋转的体积怎么算?如果是绕Y轴旋转,你可以先画出图形,是一个中心凹陷、中间凸起、边缘光滑过度的一个东东,它的体积有两种算法:一种是微薄片圆筒法求积,沿半径方向从0积到π,就是你写出来的

曲线y=sinx(0≤x≤π)绕y轴旋转一周得到几何体的体积是.

其实每一个截面是一个环形,这个环形的大圆半径是π-arcsiny,小圆半径是arcsiny环形面积是π(π²-2πarcsiny)积分得到V=∫0~1[π(π²-2πarcsiny

求曲线方程y=sinx,0≤ x≤π与y=0所围成的图形绕Ox轴旋转一周所得的旋转体的体积

绕Ox轴旋转所得旋转体的体积公式为:V=∫a到b区间π【f(x)】2dx因此,旋转一周所得体积为:V=∫0到π区间π(sinx)2dx=π2/2

求由曲线y=x2及x=y2所围图形的面积,并求其绕y轴旋转一周所得旋转体的体积.

由于曲线y=x2及x=y2的交点为0和1,故所围成的面积在(0,1)上积分,于是有:A=∫ 1 0 (x −x2)dx=[23x32−x33]10=13由于绕y

2:曲线y=4-X^2与x轴围成图形绕X轴旋转一周所得立体体积为多少?

4.原式等于上下同时除 lim[(1-x/2)/(1+2/x)]=lim 由于不能打公式,我写好,照好给你传上去.

曲线x平方+y平方=1(y≥0)绕x轴旋转一周所得的集合体体积为

直接用球体积公式就可以了!4/3pi!再问:怎么会是球呢我没搞懂他是怎么转的能画个图吗?再答:原来的曲线是个上半圆,绕着其直径转一圈啦!

直线y=0与曲线y=x-x*x所围成的平面图形绕y轴旋转一周所得旋转体的体积为____

利用薄壳法y=x-x^的零点为x=+-1开口向下分析可知与x轴相围有意义的部分知识x∈[-1,1]Vy=2π∫上1下0x*(x-x^)dx=2π∫上1下0x^-x^(3)dx=2π*[g(1)-g(0

求y=sinx(0≤x≤派)与x轴所围成图形绕x轴旋转一周后所得到立体的体积.

图形是半圆,最高点是1,所以半径为1.用公式4/3pir^3,得到答案4/3pi.再问:能写出解答过程麽,亲,这是考试题,我要求过程~~~~(>_

求曲线{x=1,y=z}绕y轴旋转一周所得的曲面方程.

x^2-y^2+z^2=1设点M(a,b,c)在直线L上,点N为点M绕Z轴旋转所得的点,设N(x,y,z),则有z=c,x^2+y^2=a^2+b^2,于是有:总之消去a,b,c;就可以得到了

求由y=sinx,y=cosx所围成图形绕x轴旋转一周所得旋转体体积.

首先必须指出:他们若不加限制,则答案为“无限大”.题目应该写明【四分之一周期】的图像旋转生成的立体图形的体积.就是图中任一个色块构成的旋转体体积.有常用的体积公式.我写了思路,你自己是否可以解决啦?&

求由曲线y=sinx与x轴所围成图形绕y轴旋转所得体积,0=<x

绕y轴旋转所得体积=∫2π*x*sinxdx=2π∫x*sinxdx=2π[(-x*cosx)│+∫cosxdx](应用分部积分法)=2π[π+(sinx)│]=2π(π+0)=2π²

曲线y=sinx(0≤x≤π)绕y轴旋转一周得到几何体的体积是

取旋转体的与x轴垂直的圆形薄圆盘,其厚度为dx,则薄圆盘的体积为pi*(y^2)dx,即为pi*(sinx)^2*dx,对其取0到pi的定积分即为旋转体体积.结果为((pi)^2)/2