arcsin的导数推导

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:30:41
arcsin(x/2)的导数怎么求

(arcsin(x/2)'=1/√[1-(x/2)²]×(x/2)'=1/√[1-(x/2)²]×1/2=1/√(4-x²)

arcsin√(y/x)的导数

隐函数求导y=arcsin(y/x)^1/2反三角定义化简整理siny=(y/x)^1/2x=y/sin^2yy=x*sin^2y左右对x求导y'=sin^2y+(sin^2y)'x=sin^2y+2

求y=arcsin(2x+3)的导数

y=arcsin(2x+3),先对外层函数arcsin(2x+3)求导数,再乘以内层函数2x+3的导数y'=1/√[1-(2x+3)²]*(2x+3)'=1/√(1-4x²-12x

关于指数函数的导数的推导

额,这个楼主我看了一下你的教材书里面的那个例子是为了求出一个使得瞬间增长率为常数的函数f(x)有这个前提我们就好看他下面的推导的.要知道他的前提是f'(x)/f(x)=1这个是条件而我相信楼主不用看后

y=arcsin根号下x的导数

这是一个复合函数求导的题,复合函数的求法是f(g(x))导数=f'(g(x))*g'(x).y=arcsinx的导数=1/根号(1-x^2)这是公式.y=根号x的导数=1/(2*根号x)也是公式推导的

求函数y=e^arcsin√x的导数

按复合导数来arcsinx的导数为1除根号下1-x^2y'=e^arcsin√x*1/√(1-x)=e^arcsin√x/√(1-x)

怎么证明arcsin x 的导数

根据导数的定义ARCSINX的导数={ARCSIN(X+a)-ARCSINX}/a(a趋向于0)现在令ARCSIN(X+a)=pARCSINX=q那么有X+a=sinpX=sinq那么ARCSINX的

y=arcsin(x/2)的导数,麻烦详细一点

y'=(1/根号(1-x的平方/4))*(1/2)

求函数y=arcsin(sinx)的导数

令sinx=t.arcsint的导数是1/(1-t^2)^1/2=1/|cost|再乘以sinx的导数cosx所以答案是cosx/|cosx|

求函数的偏导数 z=arcsin(xy)

令u=xy,则z对x的偏导就变为(dz/du)*(偏u/偏x),然后按这样的顺序算就行了,同理,对y也一样,不知道这样说你明不明白

arcsin(sinx) x导数不同

y=arcsin(sinx)=x-1≤x≤1y'=1-1≤x≤1但为什么他们的导数不同呢?----------------没有不同.再答:当-π/2

导数公式的推导老大是推导过程

c'=0(c为常数)(x^a)'=ax^(a-1),a为常数且a≠0(a^x)'=a^xlna(e^x)'=e^x(logax)'=1/(xlna),a>0且a≠1(lnx)'=1/x(sinx)'=

y=arcsin(sinx)^0.5的导数

不懂请追问希望能帮到你,望采纳!再问:能不能化简一下再答:已经很简单了,不用化简啦。。。再答:ok

求arcsin根号下x/1+x的导数

y=arcsinuu=v^(1/2)v=x/(1+x)y'=1/(1-u^2)u'=1/2*v^(-1/2)v'=1/(1+x)^2y'=1/√(x+x^2)

(1/a)arcsin(x/a)的导数是多少

1/根号(1-x^2/a^2)再问:对吗?是不是还要对(x/a)求导啊,复合求导不太会再答:不好意思,应该还要乘以(1/a)^2,我原来以为能约掉的。。

商的导数公式的推导过程.

(u/v)'=[u*v^(-1)]'=u'*[v^(-1)]+[v^(-1)]'*u=u'*[v^(-1)]+(-1)v^(-2)*v'*u=u'/v-u*v'/(v^2)通分,易得(u/v)=(u'

y=arcsin(x/2),y的导数是?

这是复合函数,y=arcsinu,u=x/2.由“复合函数求导法则”可得y'=[1/√(1-u²)]×(1/2)=(1/2)×1/√[1-(x/2)²]=1/√(4-x²

怎么证明ARCSIN X的导数

根据导数的定义ARCSINX的导数={ARCSIN(X+a)-ARCSINX}/a(a趋向于0)现在令ARCSIN(X+a)=pARCSINX=q那么有X+a=sinpX=sinq那么ARCSINX的

怎么推导指数函数的导数

设:指数函数为:y=a^xy'=lim【△x→0】[a^(x+△x)-a^x]/△xy'=lim【△x→0】{(a^x)[(a^(△x)]-a^x}/△xy'=lim【△x→0】(a^x){[(a^(