已知方阵A.B都是正定阵,证明A B:也是正定阵.

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/30 08:19:22
A是n阶方阵,如何证明A*A^T是半正定矩阵

x^T(AA^T)x=(A^Tx)^T(A^Tx)这是A^Tx与A^Tx的内积,恒有>=0所以AA^T半正定(对称略)再问:x是任意一个矩阵吗?再答:是任一列向量这应该是显然的,半正定的定义中有

设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵

因为A^2-4A+3E=0所以A(A-2E)-2(A-2E)-E=0所以(A-2E)(A-2E)=E所以A-2E可逆所以2E-A可逆所以B=(2E-A)^T(2E-A)是正定矩阵--正定合同于单位矩阵

已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(

设A,B均是n阶正定矩阵,证明A+B是正定矩阵

转置符号用'代替说明首先,第一步(A+B)’=A‘+B’=A+B所以A+B是对称矩阵其次,任取x≠0根据正定定义x‘Ax>0.x‘Bx>0.于是x’(A+B)x=x‘Ax+x‘Bx>0所以A+B是正定

设A,B都是n阶实矩阵,其中A正定,B半正定.证明:det(A+B)>det(A)

首先,由A正定,存在正定矩阵C使A=C².这个用可对角化证明:由A为实对称阵,存在正交阵T使T^(-1)AT为对角阵.又A正定,故T^(-1)AT的对角线上均为正数(特征值>0).故存在对角

线性代数证明题,若A,B均为正定矩阵,则A+B也是正定矩阵

证明:设x为非零列向量,则x^TAx>0,x^TBx>0所以x^T(A+B)x=x^TAx+x^TBx>0所以A+B正定

求助已知A是n阶正定矩阵,B是n阶反对称矩阵,证明A-B^2也为正定矩阵.

对非零列向量xBx是一个列向量则(Bx)'(Bx)>=0[这里要求B是实矩阵--线性代数默认]这是内积的非负性(一个性质),原因:设Bx=(a1,...,an)'则(Bx)'(Bx)=a1^2+...

正定矩阵的证明题目是这样的A(m*n).B=aI+A(转置)A.证明B是正定阵

任意非零向量x,x^TBx=x^T(aI+A^TA)x=ax^Tx+x^TA^TAx=a(x^Tx)+(Ax)^T(Ax)>=ax^Tx>0,因此正定.

大学线性代数:已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。

若A,B都是正定矩阵,怎么证明A+B也是正定矩阵

因为A,B都是正定矩阵所以对任意n维列向量x≠0,x'Ax>0,x'Bx>0所以x'(A+B)x=x'Ax+x'Bx>0所以A+B是正定矩阵.注:x'=x^T

设A,A-E都是n阶正定矩阵,证明E-A^-1为正定矩阵

正定的充分必要条件是所有特征值为正,故可如图证明.经济数学团队帮你解答,请及时采纳.谢谢!

设A、B均为N阶实对称正定矩阵,证明:如果A—B正定,则B的逆阵减去A的逆阵正定.

任取非零向量α=(α1,α2,...αn),存在非零向量β=(β1,β2...βn),使得α'β=I,则有β'α=I因为A-B正定,则有α(A-B)α'>0,则αAα'>αBα'由A,B正定得A逆,B

A ,B 都是实正定矩阵 证明AB也是正定矩阵

先证AB为对称矩阵.这题应该缺少A,B可交换这一条件,否则AB为对称矩阵这一条件也无法满足.再证AB的特征值全为正.因为A,B为正定矩阵,所以对于矩阵A,B可以找到共同的正交矩阵T,使得T'AT=di

设实矩阵A,B都是正定矩阵,证明A+B也是正定矩阵.

搞清楚正定的意义就很容易证明了.矩阵A是正定的等价于对于任意非零向量a,都有a'Aa>0;如果A、B都是正定的,那么对于任意非零向量a,都有a'Aa>0;a'Ba>0;显然对于任意非零向量a,就有a'

n阶方阵A,B正定,问分块矩阵(O,A,B,O)是否正定?怎么证明?如果不是给出证明和反例

是不是正定要先看是不是对称的啊~要是A≠B',那自然就谈不上正定喽

m阶方阵A正定,B为m×n实矩阵,证明,BTAB正定的充要条件是r(b)=n

B^TAB正定等价于对于任意n×1的非零矩阵x有x^TB^TABx>0,即(Bx)^TA(Bx)>0.注意A正定,因此当Bx≠0时(Bx)^TA(Bx)>0,但Bx=0时(Bx)^TA(Bx)=0,即

设A B都是n阶正交方阵,证明:

A是正交矩阵的充分必要条件是A'A=EAA'=EA^(-1)=A'.由A,B是正交矩阵,所以A'A=E,B'B=E,等等.所以有[A^(-1)]'A^(-1)=(A')'A'=AA'=E,所以A^(-

A,B都是n阶半正定矩阵,证明:AB的特征值都≥0

首先,如果A正定B半正定的话可以利用相似变换,AB相似于A^{-1/2}(AB)A^{1/2}=A^{1/2}BA^{1/2},所以特征值都>=0然后利用特征值的连续性,AB的特征值可以看作(A+tI