已知n阶实对称矩阵A满足A^3 A^2 A-3E=0,则A的全部特征根为

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/01 00:29:20
设A为n阶实对称矩阵,且满足A3+A2+A=3E,证明A是正定矩阵.

假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,

线性代数题:证明:如果n阶实对称矩阵A满足A^5-2A^4+5A^...

:设a是A的特征值.则a^5-2a^4+5a^3-8a^2-9是A^5-2A^4+5A^3-8A^2-9E的特征值.而A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0所以a^5-

已知:A为n阶实正定对称矩阵,B为n阶反实对称矩阵 证:det(A+B)> 0

A为n阶实正定对称矩阵,==>A=PP^T(存在P可逆)B为n阶反实对称矩阵==》P^{-1}BP^{-1}^T为n阶反实对称矩阵,==》P^{-1}BP^{-1}^T的特征值都是实部为0的复数,==

已知N阶可逆矩阵A满足2A(A-E)=A^3,求(E-A)^(-1)

因为2A(A-E)=A^3所以A^3-2A^2+2A=0所以A^2(A-E)-A(A-E)+A-E=-E即(A^2-A+E)(E-A)=E所以E-A可逆,且(E-A)^-1=A^2-A+E.

线性代数题:证明:如果n阶实对称矩阵A满足A∧5-2A∧4+5A∧3-8A∧2-9E=0,则A一定是正定矩阵.

证:设a是A的特征值.则a^5-2a^4+5a^3-8a^2-9是A^5-2A^4+5A^3-8A^2-9E的特征值.而A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0所以a^5

已知A是3阶实对称矩阵,满足A^4+2A^3+A^2+2A=0,且秩r(A)=2求矩阵A的全部特征值,并求秩r(A+E)

因为A可相似对角化所以A与对角矩阵B相似,且B的主对角线上的元素都是A的特征值而相似矩阵的秩相同所以对角矩阵B的秩也是为2所以A的非零特征值的个数为2故特征值为0,-2,-2总结:可对角化的矩阵的秩等

设A是n阶实对称矩阵,A^2=A,证明存在正交矩阵.

由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕

线性代数题:证明:如果n阶实对称矩阵A满足A^5-2A^4+5A^3-8A^2-9E=0,则A一定是正定矩阵

证:设a是A的特征值.则a^5-2a^4+5a^3-8a^2-9是A^5-2A^4+5A^3-8A^2-9E的特征值.而A^5-2A^4+5A^3-8A^2-9E=0,零矩阵的特征值只能是0所以a^5

已知n阶对称矩阵A(未必可逆)满足A^=2A,证明A-I是正交矩阵

A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

设A是3阶实对称矩阵,满足A∧2=3A,且R(A)=2,那么矩阵A的三个特征值是?

再问:为什么是330不是003呀?再答:因为它的秩为2,如果是0,0,3的话,秩就是1了。再问:我就是这个地方不明白,可以再说清楚一点吗π_π再答:实对称矩阵必相似于一个对角矩阵,且对角矩阵的对角元素

证明一个N阶实对称矩阵A是正定的当且仅当存在可逆实对称矩阵B,满足A=B*B

若A正定,则存在正交矩阵T,A=T^(-1)PT.其中P=diag(a1,…an)为A的标准型,ai>0.记Q=diag(√a1,…√an),取B=T^(-1)QT即可!若A=B^2,B实对称,类似上

设A是秩为r的n阶实对称矩阵,满足A^4-3A^3+3A^2-2A=0,则A的n个特征值?

设p是A的任一特征值,a是A属于p的特征向量,于是有(A^4-3A^3+3A^2-2A)a=(p^4-3p^3+3p^2-2p)a=0,即p(p-2)(p^2-p+1)=0因为实对称矩阵特征值必为实数

高等数学线性代数问题设n阶实对称矩阵A,满足A^3+A^2+A=3E,证明A是正定矩阵. 我是这样想的:λ^3+λ^2+

证明:因为A^3+A^2+A=3E所以A的特征值λ满足λ^3+λ^2+λ-3=0所以(λ-1)(λ^2+2λ+3)=0又因为A是实对称矩阵,实对称矩阵的特征值都是实数所以λ=1即A的特征值为1,1,.

线性代数问题若n阶实对称矩阵A满足A^8-5A^7+6A^2-3A+E=0 则下列不正确的是A 行列式|A|>0B 存在

特征方程为:f(λ)=λ^8-5λ^7+6λ^2-3λ+1=0其因式分解后为(λ-x1)(λ-x2)(λ-x3)...(λ-x8)其中x1,x2,...,x8为A的特征值,比较两式可发现x1*x2*.

设a是n阶实对称矩阵,且满足A^2+2A=0,若kA+E是正定矩阵,则k的取值范围

由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<

若A为n阶实对称矩阵且满足A∧2+4A+4E=0,证明:A=-2E

因为A^2+4A+4E=0所以(A+2E)^2=0所以A的特征值只能是-2.又由于A是实对称矩阵(可对角化)所以存在可逆矩阵P满足P^-1AP=diag(-2,-2,...,-2)=-2E所以A=P(

n阶实对称矩阵A满足A的100次方等于0,下列选项中不正确的是:A.A一定有三个线性无关的特征向量

这道题好玩.因为0一定是A的特征值,也就是说B是对的.那么D说“以上三个选项都不正确”,肯定是错了.感觉上A=0也是对的.而A不一定有三个线性无关的特征向量.比如说如果A就是2阶的零矩阵,那么只有两个