小车ab静置于光滑的水平面上

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 11:47:28
一道动量守恒题~小车AB静置于光滑的水平面上,A端固定一个轻质弹簧,B端粘有橡皮泥,AB车质量为M,长为L,质量为m的木

在细绳烧断瞬间,C获得的速度为v1,AB获得的速度为v2,根据动量守恒,mv1=Mv2当C运动到B时,小车将停止运动,所以小车运动时间t=L/(v1+v2)

右端带有光滑圆弧轨道质量为M的小车静置于光滑水平面上,以下说法正确的是

问题一平抛相对于底面.题中没有特殊强调的时候,都是以地面为参考系.问题二小球从小车的最高点飞出时在水平方向和小车具有相同的速度Vx,小球离开车后做斜抛运动,水平速度Vx不变,小车做速度为Vx的匀速直线

质量为m=9kg的小车置于光滑水平面上小车平台面恰好与半径为r=0、45m的四分之一

小车质量M=9kg,置于光滑水的平面上,小车平台面恰好与半径为R=0.45m的四分之一圆周的固定的光滑轨道的末端B点相切,质量为m=1kg的滑块从轨道的上端A点无初速度释放,滑块滑上小车,并从小车的另

右端带有1/4光滑圆弧轨道质量为M的小车静置于光滑水平面上,如图所示.一质量为m的小球以速度v0水平冲上小车,关于小球此

整个系统的初动量P=mv0,因为系统置于光滑水平面,符合动量守恒,无论小球最终做什么样的运动,系统水平方向的动量都是P=mv0.设小球离开车速度为v1,车速度为v2.(整个速度都是绝对速度,以地面为参

质量为9kg的小车置于光滑的水平面上小车平台面恰好与半径为r=0、45m的四分之一

小车质量M=9kg,置于光滑水的平面上,小车平台面恰好与半径为R=0.45m的四分之一圆周的固定的光滑轨道的末端B点相切,质量为m=1kg的滑块从轨道的上端A点无初速度释放,滑块滑上小车,并从小车的另

:-):哈:右端带有四分之一的光滑形圆轨道质量为M的小车静置于光滑水平面上,质量为m的小球以速度V水平冲...

1/4光滑,受到的阻力为3/4,冲上小车,把动能转化为汽车的机械能,使汽车行驶,1,小球因力的作用相互的被反向推开.2,和汽车一起行驶,受到摩擦逐渐停下.受到摩擦阻力不可能匀速下去,3,与车驾驶,一段

右端带有光滑圆弧轨道质量为M的小车静置于光滑水平面上,如图所示.一质量为m的小球以速度v0水平冲上小车,小球未从轨道上飞

1、小球上升到最高点时,垂直方向的速度为0,水平方向的速度与小车相同,假设为v1,小球在车上上升的最大高度假设为h.根据动量守恒和能量守恒m*v0=(M+m)*v1(1)1/2*m*v0^2=1/2*

(2014•达州模拟)如图所示,一平板小车静置于光滑水平面上,其右端恰好和一个固定的14光滑圆弧轨道AB的底端等高对接.

(1)滑块从A端下滑到B端,由机械能守恒得mgR=12mv20得v0=2gR=3m/s在B点,由牛顿第二定律得FN-mg=mv20R解得轨道对滑块的支持力FN=3mg=30N由牛顿第三定律可知,滑块对

5,3测评31页,8(解析疑问),如图所示,上表面有一段光滑圆弧的质量为M的小车A置于光滑水平面上,

我觉得是这样的.A的能量完全来自于B的重力势能转化而来.那么是什么力做功呢?B对A的压力做正功使A的动能增加,相反,A对B的支持力就对B做负功.A原来静止,现在运动了,动能增加,也就是机械能增加了.

质量为M的小车置于光滑水平面上,小车的上表面由光滑的四分之一圆弧和光黄平面组成,圆弧半径为R,车的右端固定有一不及质量的

答:整个系统没有能量损失,则根据机械能守恒和动量守恒有:mgR=1/2mv²+1/2MV²mv=MV解得V=√[(2m²gR)/(M²+m²)]仅供参

有一质量为M=2kg的小车置于光滑水平面上,在小车上放有一质量m=4kg的木块.设木块与小车最大静摩擦力为12N,μ=0

整体法、隔离法、临界极值打字麻烦.假设小车、木块.一起运动,最大加速度取小车分析:a=最大静摩擦力/M=6整体的最大拉力F=(M+m)a=36N可见对木块施加24N和48N的水平恒力时,前者一起加速,

动量问题质量为M的小车置于水平面上.小车的上表面由1/4圆弧和平面组成,车的右端固定有一不计质量的弹簧,圆弧AB部分光滑

1滑块与小车初始状态为静止速度为0(共速)这没问题吧2末状态滑块相对小车静止:最后又返回到B相对于车静止(共速),关键是速度为什么是0因为开始时,小车,弹簧和球组成的系统相对水平面是静止的,以水平面为

一个平板小车置于光滑水平面上,其右端恰好和一个14光滑圆弧轨道AB的底端等高对接,如图所示.已知小车质量M=3.0kg,

(1)A到B过程,由动能定理:mgR=12mvB2---①在B点:N-mg=mv2BR---②联立①②两式并代入数据得:vB=4m/s,N=30N有牛顿第三定律得物块对轨道的压力为15N.(2)对物块

(2013•日照二模)一个平板小车置于光滑水平面上,其右端恰好和一个轨道半径R=0.8m的14光滑圆弧轨道AB的底端等高

(1)滑块从A端下滑到B端,由机械能守恒定律得:mgR=12mv20解得:v0=2gR=2×10×0.8=4m/s   在B点由牛顿第二定律得:FN-mg=mv20R,解

如图所示,劲度系数为K的弹簧一端与墙体固定,另一端与倾斜角为a的斜面体小车连接,小车置于光滑水平面上,在小车上叠放一个物

1、因为物体与车之间始终没有相对滑动,所以把他们看作一个整体,加速度始终相同,但拉到B时,系统所受外力为F=kb,加速度a=kb/(M+m),小物块此时加速度为a,所以受合外力为mkb/(M+m),方

小车AB静置于光滑的水平面上,A端固定一个轻质弹簧,B端粘有橡皮泥,AB车质量为M,长为L,质量为m的木块C放在小车上,

A、物体C与橡皮泥粘合的过程,发生非弹簧碰撞,系统机械能有损失,产生内能,故A错误.B、整个系统在水平方向不受外力,竖直方向上合外力为零,则系统动量一直守恒,故B正确,C、取物体C的速度方向为正方向,

四合金属圆环均静置于光滑的水平面上,圆环的圆心为O.直导线ab固定于同一水平面上且与金属环绝缘,二者之间的摩擦不计,ab

用磁通量的观点解释:B中ab导线在圆心的左边,当ab电流突变时,圆环右边的磁通量大左边的磁通量小,由楞次定律(阻碍磁通量的变化)故圆环只有向左移动才阻碍磁通量的变化.