如图所示ab是半径为1m的1 4光滑圆弧形金属导轨,现竖直固定

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/04 00:03:07
如图所示,ABDO是处于竖直平面内的光滑轨道,AB是半径为R=15m的14圆周轨道,半径OA处于水平位置,BDO是直径为

(1)设小球通过D点的速度为v,则有:mv2R2=F=143mg小球从P点落下直到沿光滑轨道运动的过程中,机械能守恒,有mg(H+R2)=12mv2可得高度H=23R=10m(2)设小球能够沿竖直半圆

(2014•江西二模)如图所示,光滑的14圆弧AB(质量可忽略)固定在甲车的左端,其半径R=1m.质量均为M=3kg的甲

(i)设滑块P刚滑上乙车时的速度为v1,此时两车的速度为v2,滑块、甲、乙两辆小车组成系统,规定向右为正方向,根据系统水平方向动量守恒列出等式:mv1-2Mv2=0   

如图所示,在竖直平面内有一条1/4圆弧形轨道AB,其半径为1m,B点的切线方...

先用动量守恒求(1),然后用机械能守恒求(2)好久没看物理书了

如图所示,ABDO是固定在竖直平面内的光滑轨道,AB是半径为R=15 m的四分之一圆周轨道,半径OA处于水平位置

1)机械能守恒:mgh=1/2mv²解得v=10√(2)=14.142)机械能守恒:mgh=1/2mv²,小球脱离轨道后降地时长:t=√(2R/2/g),其中R=15由几何关系得同

如图所示,轨道ABC的AB是半径为0.4m的光滑14圆弧,BC段为粗糙的水平轨道,且圆弧与水平轨道在B点相切.质量为1k

(1)滑块从A到B过程中,机械能守恒,由机械能守恒定律得:Ek=mgR=1×10×0.4=4J;(2)在B点:Ek=12mv2,速度v=2Ekm=2×41=22m/s,在B点,由牛顿第二定律得:F-m

如图所示,弧AB是半径为R的1/4圆弧,在AB上固定一个光滑的木板DB.一质量为m,

1/2mv2=mgul可得B处速度:根号2guL.所以高度为UL.由几何性质BD的水平距离:[根号2URL-(UL)2]设为d.之后就是一些简单的计算了.

如图所示,M是弧AB的中点,过点M的弦MN交AB于点C,设⊙O的半径为4cm,MN=4√3cm

1.连接OM、ON,做OQ垂直于MN,交MN于点Q,OM=ON=4,MQ=NQ=2倍根号3,勾股定理得OQ=2,所以O到弦MN的距离为2.2.角ACM为60度.在RT三角形OQM中,OQ=1/2OM,

如图所示质量为m的小球自由下落高度R后沿竖直平面内的轨道ABC运动.AB是半径为R的1/4粗糙圆弧,BC是直径为R的光滑

看懂题目及所说的图了.分析:设小球在C点时的速度是Vc,由于它对轨道压力恰为0,所以有mg=m*Vc^2/(0.5R)   ---注意BC圆弧的直径是R,那么半径就是0.5R得 Vc=根号(0.5gR

如图所示,abc是光滑的轨道,其中ab是水平的,bc为竖直平面内的半圆且与ab相切,半径R=0.3m.zhiliangm

1、(1)分别以v1和v2表示小球A和B碰后的速度,v3表示小球A在半圆最高点的速度,则对A由平抛运动规律有:L=v3t和h=2R=gt2/2解得:v3=2m/s.对A运用机械能守恒定律得:mv12/

关于机械能如图所示,AB为四分之一圆弧轨道,半径为0.8m,BC是水平轨道,长3m,BC处的动摩擦因数为u=1/15 .

1:mgr-Wf=umgs(r=0.8ms=3m得Wf=6J2:mg(H+h)=Fh得F=mg(H+h)/h3:ma=F-mgsin37-umgcos37F=2mg得a=10m/s^2v^2=2asv

如图所示,AB是半径为R的1/4光滑圆弧轨道(高二物理会考)

设物体质量m,在b点物体受力为重力mg,轨道支撑力3mg,所以向心力f=2mgf=mv^2/r=2mg,而a1=v^2/r所以a1=2gv=√2gr刚离开时,只受重力,所以a2=g因为是平抛运动,t=

如图所示,AB是半径为5m的1/4光滑圆弧轨道,B点切线在水平方向,且B点离水平地面为20m.有一质量为2Kg的物体(可

(1)由mgR=0.5mv^2N-mg=mv^2/RN=3mg=60N物体到达B点时,对轨道的压力60N(2)v=(2gR)^1/2=10m/s(3)h=0.5gt^2t=2sx=vt=20ms=(x

如图所示,AB和CD为半径为R=1m的1/4圆弧形光滑轨道,BC为一段长2m的水平轨道.质量为2kg的物体从轨道A端由静

(1)设物体沿CD圆弧能上滑的最大高度为h,则此过程由动能定理可得:mg(R-h)-μmgxBC=0-0,解得h=0.8m;(2)设物体在BC上滑动的总路程为s,则从下滑到静止的全过程由动能定理可得:

如图所示,ABC是光滑的轨道,其中AB是水平的,BC为竖直平面内的半圆,半径为R,且与AB相切.质量m的小球在A点以初速

从A到C的过程中运用动能定理得:12mvC2-12mv02=-mg2R解得:vc=v20-4Rg(2)在C点根据向心力公式得:Nc+mg=mvc2解得:Nc=mv20R-5mg (3)小球离

如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R.一个质量为m的物

(1)因为摩擦始终对物体做负功,所以物体最终在圆心角为2θ的圆弧上往复运动.对整体过程由动能定理得mgR•cosθ-μmgcosθ•x=0所以总路程为x=Rμ.(2)对B→E过程,由动能定理得mgR(

如图所示,半圆轨道的半径为R=10m,AB的距离为S=40m,滑块质量m=1kg,滑块在恒定外力F的作用下从光滑水平轨道

分析:(1)滑块离开C点后做平抛运动得 S=Vc*t  2R=g*t^2/2得 Vc=S*根号[g/(4R)]=40*根号[10/(4*10)]=20m/s(2)在C点时,由向心力公式 得mg+Nc=

如图所示,在竖直平面内有一条14圆弧形轨道AB,其半径为1m,B点的切线方向恰好为水平方向.一个质量为2kg的小物体,从

(1)设小滑块在AB轨道上克服阻力做功为W,对于从A至B过程,根据动能定理得:mgR−W=12mv2代入数据解得:W=4 J,即小滑块在AB轨道克服阻力做的功为4J.(2)物体在B点受到的支

运动员驾驶摩托车做腾跃表演.如图所示,AB是平直路面,BCE为上坡路,其中BC段可视为半径为R=20m的圆弧且与AB、C

见图:再问:不一样的再答:不好意思,看错了。我在word里自己做了一遍,请看:

如图所示,轨道ABCD的AB段为一半径R=0.2m的光滑1/4圆形轨道,BC段为高为h=5m的竖直轨道,CD段为水平轨.

1)水平距离s=vt=v√h/g=1.41m2)N=mg+mv^2/R=3N3)X=vt,H=gt^2H=Xtan45所以,H=gX^2/v^2解方程得到H=X=v^2/g字数限制,不能详细解释.