如图,固定于竖直面内的粗糙斜杆,与水平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/01 22:43:08
如图a所示,质量m的小球穿在足够长的斜杆上,斜杆与水平方向成θ角,斜杆固定不动,小球与斜杆间的动摩擦因数为μ,小球受方向

楼上给的已经算出了速度最大时候的F,你在根据坐标写出速度和力的关系式F=F0/v0*V,就能得出V了.再问:�ܷ�����ϸһ��Ĺ�̣�лл再答:

如图所示,固定在竖直面内的光滑半圆形轨道与粗糙水平轨道在B点平滑连接,轨道半径R=0.5m,一质量m=0.2kg的小物块

(1)A到B的过程中推力与摩擦力做功,得:Fx-μmgL=12mvB2①在B点时重力与支持力的合力提供向心力,得:NB-mg=mv2BR联立解得:NB=6N   根据牛顿

如图,放于竖直面内的光滑金属圆环半径为R,质量为m的带孔小球穿于环上,同时有一长也为R的细绳一端系于球

圆环对小球的弹力方向是指向环的圆心的,绳长为R,圆心与绳的两端组成等边三角形,弹力方向与绳成60°,弹力与水平成30°.

如图11所示,半径R=0.40m的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A

匀减速运动过程中,有:vA^2-vo^2=-2as①恰好作圆周运动时物体在最高点B满足:mg=m*vB0^2/R*B0=2m/s②假设物体能到达圆环的最高点B,由机械能守恒:1/2mvA^2=2mgR

如图所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m的小球,下列关于杆对球的作用力F的判断中,

A、B,小车静止时,球受到重力和杆的弹力,由平衡条件得F=mg,方向:竖直向上.故AB错误.   C、小车向右以加速度a运动时,如图1所示,只有当a=gtanθ时,F=m

1.如图所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m的小球,下列关于杆对球的作用力F的判断

1、D对.固定杆对小球的作用力原则上可沿任意方向,题目所给的角度是没用的.对小球分析:受到重力mg、杆对它的作用力F.当小车静止时,以上二力平衡,F=mg,F方向是竖直向上.当小车有水平加速度时,以上

固定在小车上的支架的斜杆与竖直杆的 夹角为θ,在斜杆下端固定有质量为m的小球,当小车向左以加速度a运动时,为什么一定有f

1、D对.固定杆对小球的作用力原则上可沿任意方向,题目所给的角度是没用的.对小球分析:受到重力mg、杆对它的作用力F.当小车静止时,以上二力平衡,F=mg,F方向是竖直向上.当小车有水平加速度时,以上

(2013•淮安模拟)如图所示,小车上固定一水平横杆,横杆左端的固定斜杆与竖直方向成α角,斜杆下端连接一质量为m的小球;

A、B、对右边的小铁球研究,根据牛顿第二定律,设其质量为m,得:mgtanβ=ma,得到:a=gtanβ对左边的小铁球研究.设其加速度为a′,轻杆对小球的弹力方向与竖直方向夹角为θ,由牛顿第二定律,得

如图,内径均匀的S形玻璃管,其中C管竖直插在水银槽内,管内水银面比槽内水银面高.A

这个问题在假设不考虑空气密度的情况下,B到A的高度差等于C到水银槽的高度差,抓住这一点就能很容易分析.假设A液面上升h,则B上升h,C下降h;则A流入2h,C流出1h.因此判断选A.

如图所示,固定于竖直面内的粗糙斜杆,在水平方向夹角为30°,质量为m的小球套在杆上,在大小不变的拉力作用下,小球沿杆由低

60度F=MG此时没有摩擦力,拉力做工为MGH,有机械定理可知,此时机械效率100%,做功是最少的.再问:你的想法跟我一样,但是书后参考答案是60°,√3mg。麻烦你再思考一下,看看是答案错了,还是我

A固定于竖直面内的粗糙斜杆,与水平方向成30度角,质量为m的小球套在杆上,在大小不变的拉力作用下,小球

60mg夹角60°时,沿斜面分解力F,垂直方向的分力与重力的分力抵消了.因为没有摩擦力,拉力做功最小.

如图,固定于竖直面内的粗糙斜杆,与水平方向夹角为30°,质量为m的小球套在杆上,在大小不变的拉力作用下,小球沿杆由底端匀

图呢再问:2010上海理综再答:第几题再问:25再答:http://wenku.baidu.com/view/4941952ded630b1c59eeb5ae.html好像不是这道题目啊再问:物理部分

如图所示,光滑水平面 与竖直面内粗糙的

恰好到达C点就是说速度为V=根号gR你说的到达C点为0吧?这个想法是错误的恰好到达最高点的问题这个跟绳子拉球的问题相同(V=根号gR)和杆子圆管问题不同(V=0)就点到这了中间都是计算过程这里不好打出

如图,MNP为竖直面内以固定轨道,某光滑圆弧段MN与水平段NP相切于N ,P端固定一竖直板。M端相对于N的高度差为h,N

解题思路:从物块开始下滑到物块停止的整个过程中,应用动能定理可以求出动摩擦因数.注意这里存在两种可能情况。解题过程:解:这里存在两种可能:第一种情况:物块与P处的竖直挡板相撞后,向左运动一段距离,停在

如图所示,固定在小车支架上的斜杆与竖直杆的夹角为O,在斜杆下端固定一个质量为M的小球

首先,小球向又运动,加速度为a,说明杆对小球有两个方向的力,一个与重力相对的竖直向上的力,还有一个是向右的拉力.从同可知,竖直向上的拉力与杆的合力成角度为90-θ,所以F=mg\sin(90-θ).你

如图,一内壁光滑的环形细圆管,固定于竖直平面内,环的半径为R(比细管的直径大得多),在圆管中有一个直径与细管内径相同的小

(1)对小球在最低点进行受力分析,由牛顿第二定律得:F-mg=mv2R所以小球在最低点时具有的动能是94mgR.(2)根据动能定理研究从最低点到最高点得:-mg•2R=12mv′2-12mv2小球经过

如图,弧ab是竖直平面内的四分之一光滑圆弧轨道,在下端b与水平粗糙轨道相切

(1).利用重力势能转换为动能计算出b点速度.(2).N-mg=m*v^2/r求出N,再用牛顿第三定律得物体在b点对轨道压力等于N.(3).由机械能守恒,得C点动能等于克服BC段摩擦力做功和BA段克服

如图,固定于竖直面内的粗糙斜杆,与水平方向夹角为30°,质量为m的小球套在杆上,在大小不变的拉力作用下,小球沿杆由底端匀

∵小球匀速运动,由动能定理得;WF-Wf-WG=0    要使拉力做功最小则Wf=0,即摩擦力为0,则支持力为0.    

如图,半径R=0.4米的光滑半圆环轨道位于竖直平面内,半圆环与粗糙的水平地面相切于点A,一质量m=010kg的物体,在离

物体在圆环上运动不脱离圆环,则最高上升高度为R=0.4m,即半圆弧中心.(若超过此高度则物体会做抛体运动,离开轨道)因此,mgR-0.5mv^2>=-ugl解得,v

如图所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m的小球.下列关于杆对

A、B、小球受竖直向下的重力mg与杆对小球的力F作用;当小车静止时,小球也静止,小球处于平衡状态,受平衡力作用,杆的作用力F与重力是一对平衡力,由平衡条件得:F=mg,方向竖直向上.故A、B错误.C、