如图,-块半径为1,圆心角为兀 3的扇形木板opq

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/29 13:01:16
已知圆锥的底面半径为2cm,母线长为6cm(如图),则圆锥的侧面展开图的圆心角为______度.

由题意知:弧长=圆锥底面周长=2×2π=4πcm,扇形的圆心角=弧长×180÷母线长÷π=4π×180÷6π=120°.故本题答案为:120.

如图,从一个半径为1的圆形铁皮中剪下一个圆心角为90°的扇形BAC.

(1)∵∠A为直角,∴直径BC=2,∴根据勾股定理得:AB2+AC2=BC2,∵AB=AC,∴AB2+AB2=22,∴扇形半径为AB=2;∴S扇形=90π(2)2360=π2;(2)设围成圆锥的底面半

(2012•南海区三模)如图,从一个半径为1的圆形铁皮中剪下一个圆心角为90°的扇形BAC.

(1)∵∠A为直角,∴直径BC=2,∴根据勾股定理得:AB2+AC2=BC2,∵AB=AC,∴AB2+AB2=22,∴扇形半径为AB=2;∴S扇形=90π(2)2360=π2;(2)设围成圆锥的底面半

如图,半径为1cm,圆心角为90度的扇形oab中,分别以oa,ob为直径作半圆,则图中阴影部分面积为

该图中的弦AB外侧的两个小阴影圆弧与O点附近的空白圆弧的面积相等(可以用全等证明),那么把阴影的圆弧移动到空白处,则可获得一个完整的等腰直角三角形阴影,所以该图中的阴影部分面积S=1*1*1/2=1/

如图两个半径为1圆心角为90度的扇形

关键在与正方形的边长是多少,观察后发现正方形对角线是半径1所以正方形边长为1/根号2,即正方形面积为(1/根号2)^2=1/2所以两小块阴影的面积=四分之一圆-正方形=pi*r^2/4-1/2=pi*

如图现有一个圆心角为90°,半径为8cm的1/4圆形的纸片,用他恰好围成一个圆锥的侧面,圆锥的半径

一个圆心角为90°,半径为8cm的1/4圆形的纸片的弧长=2*8*π/4=4π(厘米);所以圆锥的底面周长=4π(厘米);即:底面半径*2*π=4π(厘米);底面半径=4π/(2π)=2(厘米);

如图,扇形的半径长为4,圆心角为90°,求图中阴影部分的面积

阴影部分的面积=扇形面积-三角形面积=1/4×4²π-1/2×4×4=4π-8(单位)

如图,已知一扇形的半径为3,圆心角为60°,则图中阴影部分的面积为______.

如图,∵∠AOB为60°,OA=OB,∴△OAB为等边三角形.而扇形的半径为3,即OA=OB=3,∴S阴影部分=S扇形OAB-S△OAB=60π×32360-34×32=3π2-934.故答案为:3π

如图,从一个半径是r的圆形铁皮中剪出一个圆心角为α的扇形ABC.

1.扇形半径=2×r×sinα=2rsinα,扇形面积=(2rsinα)^2×π×α/2π=2αr^2(sinα)^22.弧BC=2π×2rsinα×α/2π=2αrsinα,半径=2αrsinα÷2

如图,已知0pQ是半径为1,圆心角为兀/3的扇形,c是扇形弧上的动点,ABcD是扇形的内接矩形.记角c0p二a,求当角a

在RTΔOBC中,BC=OC*sinα=sinα,OB=OC*cosα=cosα,在RTΔOAD中,AD=BC=sinα,OA=BC÷tan(π/3)=√3/3sinα,∴AB=OB-OA=cosα-

一个扇形如图,半径为10cm,圆心角为270°,用它做成一个圆锥的侧面,那么圆锥的高为______cm.

如图:圆的周长即为扇形的弧长,列出关系式nπr180=2πx,又因为n=270,r=10,所以270×π×10180=2πx,解得x=152,h=100−2254=1752=572cm.故答案为:57

(2v14•东营)如图,已知扇形的圆心角为多v°,半径为b,则图中弓形的面积为(  )

过A作AD⊥CB,∵∠CAB=gw°,AC=AB,∴△ABC是等边z角形,∵AC=3,∴AD=AC•stngw°=3×3a=3a,∴△ABC面积:1a×3×3a=334,∵扇形面积:gw•π•33gw

如图,一个扇形的半径为30圆心角α为120°,用这个扇形做圆锥的侧面,求圆锥的底面的半径和高

高为30xcos60=15,设底面半径为r,扇形那段圆弧为120除以180再乘2兀R=2/3兀R,2/3兀R=2兀r,r=1/3R=1/3x30=10再答:毕意我上高二了,这种题还是好做

已知圆锥的底面半径为1,高为根号3,则圆锥展开图的圆心角为?

√3²+1²=4圆锥母线的长是√4=2圆锥底面周长是2π×1=2π360º×2π÷﹙2π×2﹚=180º圆锥展开图的圆心角为180º再问:180&#1

如图,半径为1圆心角为3π|2圆弧AB上有一点C,当C为圆弧AB中点时,D为线段OA上任一点,

注:以下不带绝对值“||”的OC等均表示向量.(1)设|OD|=x,则|OC+OD|²=|OC|²+|OD|²+2OC•OD=1+x²+2̶