在开区间每一点函数都有极限,但是在
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:53:38
问:对数形式的:底数是一个f(x),对数是一个g(x),函数极限在x趋向于某一点的时候都存在,那么这个对数函数的极限难道就是直接带入这俩个极限值么?答:是问:为什么?答:由对数法则——换底公式log_
有定义点就是函数f(x)在x=x0处有定义,如2(1),直接把x=1代入即可(2)x=3处无定义,要约去零因子,即约去x-3,把x³-27立方差,x³-27=(x-3)(x
极限与极值不是同一个概念连续函数处处都有极限极值是指在一个局部区间内的最大值,即比左右两边的点值都要大连续区间之内极值不一定存在,如一个单调递增的函数,y=x,它上面的点永远不可能比它右边的点大根本就
如果这无穷多个间断点只有一个聚点.那么函数可积
必要不充分再问:没有这个选项呢
分段函数是看间断点左右极限是否相等普通函数是limx趋向于a时f(x)=f(a)
在x轴上从左往右看x递增坡度向下的就是减函数坡度向上的就是增函数(-1,0]减函数,(0,2]增函数,(2,4]减函数,(4,5]增函数
函数在一点附近有界但是函数可能是振动的因此不能推出有极限但函数有极限根据极限的有界性能推出在该点附近函数有界
函数在该点有界,不一定有极限,但是在该点有极限,一定在该点附近有界.
函数在某点可导说明函数在此点一定有函数极限.函数在某点有极限不一定在此点可导,比如说|x|函数在x=0处有极限,但是在此点不可导.
(-1,0)(2,4)是减区间(0,2)(4,5)是增区间
有思想,有深度的题目答案确实是“不可能”再答:①假如函数在该点不连续,那么必不可导,所以此种情况不符合你的要求。再答:②假如函数在该点连续,则根据洛必达法则,该点的左导数和右导数都存在,且分别等于导数
令F(x)=f(x)-x,F(0)>0,F(1)连续,故至少在(0,1)内有一点ξ,使得F(ξ)=0,即f(ξ)=ξ.下面用反证法证明ξ只有一个.假设存在ξ1,ξ2∈(0,1),F(ξ1)=0,且F(
存在极限就是无限趋近的意思不一定要等于该点的函数值但左极限必须要和右极限相等
证明:反证法,假设f(x)无界,(无界的定义,任取M,存在x0使得|f(x0)|>M)取M1>0,则存在x1∈[a,b],使得|f(x1)|>M1将[a,b]平均为分两个区间,若f(x)在左边区间无界
对于一元函数.连续,说明极限存在并且极限值等于函数值,即左右极限相等并且等于函数值.连续必左右极限相等.再问:对于二元函数就不是了?再答:是的。
1)该部分的证明题主要是极限存在性的证明,然后是一些有关N的等式或不等式证明2)只要证明某点的左极限=右极限=该点的函数值就可以证明函数在该点连续了,即lim(f(x0-))=limf(x0+)=f(
LZ:函数在(-1,0)上是单调递减的,在(0,2)上是单调递增的,在(2,4)上是单调递减的,在(4,5)上是单调递增的.函数在区间(-1,5)内不具有单调增减性.完毕.
就是说函数在这一点上没有定义.或者说定义域不包含这一点举一个例子好了:f(x)=x+1,定义域为x不等于1显然函数在x=1时是没有定义的,但是在x=1处的极限存在
可以肯定的是这种函数是存在的.因为从可导的定义来说,左右导数相等,是函数可导的充要条件,显然这和每一点都连续是不等价的.至于特列,普通函数很难具有这个性质,还是大数学家们厉害,居然构造出了一个典型的函