一质量2m长l的长木板固定在水平面上

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/10 23:15:16
一质量为M长为L的长方形木板放在光滑水平面上,在其左端放一质量为m的小木块A,m

用动量守恒可以解出末速度(末时刻A,B速度应该一样)求的是A速度为零的情况,由于受相同大小的摩擦力,由质量比可知加速度比.由“末速度的平方减初速度的平方=2*a*s”两板移动长度之和为L可知a与V和L

在光滑桌面上放着一长度L=2m的长木板,在木板左上端放一可视为质点的小金属块,金属块的质量和木板的质量相等,他们处于静止

由动量守恒定律得当其滑动到木板的右端时,木板的速度为v1=1m/s,金属块的速度v2mv0=mv1+mv2v2=9m/s由能量守恒得1/2mv0^2=1/2mv1^2+1/2mv2^2+μmgx相对x

(2011•朝阳区二模)如图所示,光滑水平面上一质量为M、长为L的木板右端靠在固定于地面的挡板P上.质量为m的小滑块以水

(1)小滑块在木板上做匀减速直线运动,则整个滑动过程的平均速度.v=v02所以     t=L.v=2Lv0(2)设小滑块在木板上滑动时所受的摩擦力大

长木板AB的B端固定一挡板,木板连同挡板的质量为M=4kg,A、B间距离s=2m.木板位于光滑水平面上.在木板A端有一小

分析:1)小物块最终恰好回到A端且不脱离木板,说明小物块最终和木板相对静止,设最终的共同速度为V根据动量守恒可以得到:m*Vo=(m+M)*V解出,V=m*Vo/(m+M)=0.8m/s2)根据能量守

长为L,质量为M的木板静止在光滑水平桌面上,有一质量m的小木块B以水平速度V0恰好落在木板A的左端,木板B与木板A间的摩

N=mgf=Nμ=mgμB恰好到达A点右端时,A、B间相对移动距离为L,摩擦力做功为fL=mgμL由于A、B受的外力合力为零(把A、B看成一个系统时,摩擦力f是内力),动量守恒mV0=(m+M)V——

一质量为M长为L的长方形木板放在光滑的水平地面上

A、B都减速.最后速度相同.据动量守恒:M*Vo+(-m*Vo)=(M+m)*VV={(M-m)/(M+m)}*Vo,方向向左.据“动能定理”(对m,向右运动到达的最远处的速度为零)F*X=(1/2)

一质量为M,长为L的长方形木板一质量为M、长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m

A向左移动到最大距离不是A走到边缘的时候,因为由动量定理可知最终的速度方向是B的方向,所以当A向左减速到速度为0的时候,才是向左移动最远的距离.因为速度减到0之后,还有一个想右加速的过程.这样,问题倒

如图,一质量为M=2kg,长L=1m的匀质木板放在足够长的光滑水平桌面上

(1)f=μmg,a=(F-f)/m=2m/s²,L=1m,v²=2as,得v=2m/s(2)a1=f/M=1m/s²,v1=a1t,v=at,于是v=2v1,S-S1=

如图所示,质量为M=2kg的木板长L=2m,上表面光滑,在其右端放一质量为m=2kg的小滑块(可视为质点),木板与水平地

根据牛顿第二定律,M的加速度为:a=F−μ(M+m)gM=12−0.25×(2+2)×102m/s2=1m/s2假设4s内m不脱离M,则M的位移为:x=12at2=12×1×42m=8m>2m所以,4

(2014•奉贤区二模)如图所示,一端带有滑轮的粗糙长木板,1、2是固定在木板上的两个光电门,中心间的距离为L.质量为M

(1)根据牛顿第二定律,对整体有:a=mgM+m,则绳子的拉力F=Ma=MmgM+m=mg1+mM,当M>>m,重物的总重力等于绳子的拉力,等于滑块的合力.滑块通过光电门1的瞬时速度v1=d△t1,通

长木板质量为m,长为l,静放在水平地面上,一质量也为m的质点,以初速度v.=3m/s从长木板的左边滑上木板,已知质点滑到

长木板质量为m,长为l,静放在水平地面上,一质量也为m的质点,以初速度v.=3m/s从长木板的左边滑上木板,已知质点滑到木板右端时,质点、长木板的速度均为v=1m/s,试求相对滑动过程中木板完成的位移

如图所示,一质量为M,长L的木板固定在光滑水平面上.一质量为m的小滑块以水平速度V (1)小滑

题目不完整啊再问:�������再答:ˮƽ�ٶ�v������ʲô��������Ӧ�����˼����ְ�再问:谢谢啦!我已经知道答案了,悬赏就送给你。

长木板ab的b端固定一档板,木板连同挡板的质量为M=4kg,ab间距离s=2m,木板位于光滑水平面上,在木板a端有一小物

mv=(M+m)VV=0.8m/sE始=1/2mv2=8JE末=1/2(M+m)V2=1.6JE损=8-1.6=6.4JEf=umgS=2JEf总=2Ef=4JE碰=6.4-4=2.4J

如图所示,质量为M的长木板B被固定在水平面上,一个质量为m的滑块A以某一速度沿木板表面由C点滑至D点,在木板上前进了L,

功是力和力方向上的位移的乘积:W=F×S,滑块A,质量为M,与木板间动摩擦因素u,滑动摩擦力f=umg,求得W(f)=umg×L,长木板被固定在水平面,未产生位移,摩擦力对木板B未做功.

质量m=0.2kg的物体放在固定的长木板的一端,木板长L=1m,若物块在2N的水平力F作用下前进了0.6m时,突然将推力

f=0.4N2-0.4=0.2a求出a,在求出t,再算出0.6m时的速度再算出摩擦力的加速度,再求出滑出木板的速度.a’=-2米每秒二次V约等于2.8米每秒

如图所示,有一木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=1.4m

1)预使m从M上滑下来,需要M的加速度>m的最大加速度;m的最大加速度实在m和M产生滑动摩擦时出现的,此时m受到的外力(只考虑水平方向)=mgu=4NM受到的外力=F-mgu=F-4N,其加速度a(M

如图所示 ,一质量为M=2kg,长为L=4m的木板,放在水平地面上,在木板的右端放一质量为m=1kg的物块,用一根不可伸

设地面与木板的摩擦力为f,则有f=u(M+m)g=6N.把M与m整体考虑,M对地的加速度为a=1m/s2,m对地的加速度为-a=-1m/s2,故F-f=Ma+m(-a)计算得F=7Nm相对于M的加速度

如图所示,一质量为M、长为L的木板,放在光滑的水平地面上,在木板的右端放一质量为m的小木块

对m做力的分析,有一个方向向左的拉力F1,和向左的摩擦力f,要想是小木块移动,至少要F1=f=umg,由于是定滑轮,且地面光滑,则有F=F1,要使小木块移动l,则有W=Fl=F1l=umgl.毕业好多

如图所示,在光滑的水平桌面上放一个长为L、质量为M的长木板,将一质量为m的物块(可视为质点)放在长木板最右端.已知物块与

(1)施加水平恒力后,设m、M的加速度分别为a1、a2,m、M的位移分别为s1、s2,根据牛顿第二定律有   对m:μmg=ma1   &n