如图,△ABC中,AB=2,BC=23,AC=4,E,F分别在AB,AC上,沿EF对折,使点A落在BC上的点D处,且FD
来源:学生作业帮 编辑:拍题作业网作业帮 分类:数学作业 时间:2024/09/14 08:39:34
如图,△ABC中,AB=2,BC=2
3 |
(1)因为AB=2,BC=2
3,AC=4,
∴AC2=AB2+BC2,
∴△ABC是直角三角形,∠B=90°,
又∵AC=2AB,
∴∠C=30°,∠BAC=60°
由FD⊥BC,得∠DFC=60°,
又∵AF=DF,
∴∠FAD=∠FDA=30°,
∴∠DAB=30°,
∴ADcos30°=AB,得AD=
4
3
3.
(2)四边形AEDF是菱形.
证明:∵AB⊥BC,FD⊥BC,
∴AE∥FD,
∵∠BAC=60°,
∴∠AFD=120°,
∵∠DAF=30°,AF=DF,
∴∠ADF=30°,
∴∠EAD=∠ADE=30°,
∴∠EDF=60°,
∴AF∥ED,
∴四边形AEDF是平行四边形,
∵AF=DF,
∴平行四边形AEDF是菱形(邻边相等的平行四边形是菱形).(1)因为AC2=AB2+BC2,根据勾股定理和逆定理知,△ABC是直角三角形,∠B=90°,由折叠的性质知,AF=DF,∠AFE=∠DFE=(180°-∠DFC)÷2=60°,则EF是等腰三角形△AFD的顶角的平分线,也是△AFD的底边上的高所在的直线,∴EF⊥AD,所以∠FAD=∠FDA=30°,所以∠DAB=30°,由ADcos30°=AB,而求得AD的值.
(2)由(1)知,先证AEDF是平行四边形,再证AF=FD,所以四边形AEDF是菱形.
3,AC=4,
∴AC2=AB2+BC2,
∴△ABC是直角三角形,∠B=90°,
又∵AC=2AB,
∴∠C=30°,∠BAC=60°
由FD⊥BC,得∠DFC=60°,
又∵AF=DF,
∴∠FAD=∠FDA=30°,
∴∠DAB=30°,
∴ADcos30°=AB,得AD=
4
3
3.
(2)四边形AEDF是菱形.
证明:∵AB⊥BC,FD⊥BC,
∴AE∥FD,
∵∠BAC=60°,
∴∠AFD=120°,
∵∠DAF=30°,AF=DF,
∴∠ADF=30°,
∴∠EAD=∠ADE=30°,
∴∠EDF=60°,
∴AF∥ED,
∴四边形AEDF是平行四边形,
∵AF=DF,
∴平行四边形AEDF是菱形(邻边相等的平行四边形是菱形).(1)因为AC2=AB2+BC2,根据勾股定理和逆定理知,△ABC是直角三角形,∠B=90°,由折叠的性质知,AF=DF,∠AFE=∠DFE=(180°-∠DFC)÷2=60°,则EF是等腰三角形△AFD的顶角的平分线,也是△AFD的底边上的高所在的直线,∴EF⊥AD,所以∠FAD=∠FDA=30°,所以∠DAB=30°,由ADcos30°=AB,而求得AD的值.
(2)由(1)知,先证AEDF是平行四边形,再证AF=FD,所以四边形AEDF是菱形.
如图,△ABC中,AB=2,BC=23,AC=4,E,F分别在AB,AC上,沿EF对折,使点A落在BC上的点D处,且FD
如图在三角形ABC中,∠B=90°,E,F分别在AB,AC上,沿EF对折,使点A落在BC上的点D处,且FD⊥BC,
1.在△abc中,∠b=90°,e,f,分别在点ab,ac上,沿ef对折,使点a落在bc上的点d处,且fd⊥bc,试判断
如图,在三角形ABC中,AB=3,BC=4,AC=5,E,F分别在AB,AC上,沿EF对折,使点A落在BC上的点D处,F
如图,三角形ABC中,AB=2,BC=2倍根号3,AC=4,E,F分别在AB,AC上,沿EF对折,使点A落在BC上的点D
如图,三角形ABC中,AB等于二,BC=2根号3,AC=4,E,F分别在AB,AC上,沿EF对折,使点A落在BC上的点D
如图,在rt△ABC中,∠C=90°,∠A=60°,点E、F分别在AB、AC上,把∠A沿着EF对折,使点A落在BC上点D
如图,在Rt△ABC中,∠C=90°,∠A=60°,点E,F分别在AB,AC上,把∠A沿着EF对折,使点A落在BC上点D
如图13,在Rt三角形ABC中,∠B=90度,∠A=60度,点E,F分别在AB,AC上,沿EF对折,使点A落在BC上的点
如图,三角形ABC中,AB=1,BC=√3,AC=2,点E、F分别在AB、AC上,沿EF对折
已知,如图,点D,E,F,分别在三角形ABC的边AB,AC,BC,上,且DE//BC,EF//AB,求证:AD/AB=A
已知,如图,点D、E、F、分别在三角形ABC的边AB、AC、BC、上,且DE//BC,EF//AB,求证:AD/AB=A