作业帮 > 综合 > 作业

已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.

来源:学生作业帮 编辑:拍题作业网作业帮 分类:综合作业 时间:2024/09/14 09:46:58
已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.
求证:AE平分∠BAD.
证明:∵四边形ABCD是矩形,
∴∠B=∠C=∠BAD=90°,AB=CD,
∴∠BEF+∠BFE=90°.
∵EF⊥ED,
∴∠BEF+∠CED=90°.
∴∠BFE=∠CED.
∴∠BEF=∠EDC.
在△EBF与△DCE中,

∠BFE=∠CED
EF=ED
∠BEF=∠EDC,
∴△EBF≌△DCE(ASA).
∴BE=CD.
∴BE=AB.
∴∠BAE=∠BEA=45°.
∴∠EAD=45°.
∴∠BAE=∠EAD.
∴AE平分∠BAD.