作业帮 > 数学 > 作业

设f(x)在x=0的邻域内具有二阶导数,且lim(x趋于0)(1+x+f(x)/x)^(1/x)=e^3

来源:学生作业帮 编辑:拍题作业网作业帮 分类:数学作业 时间:2024/04/24 19:13:16
设f(x)在x=0的邻域内具有二阶导数,且lim(x趋于0)(1+x+f(x)/x)^(1/x)=e^3
(1)求f(0),f'(0)和f''(0)
(2)求lim(x趋于0)(1+f(x)/x)^(1/x)
(1) lim(x->0) (1+x+f(x)/x)^(1/x)=e^3=e^ lim(x->0) 1/x*ln[(1+x+f(x)/x)]
故有
lim(x->0) ln[(1+x+f(x)/x)]/x=3
分母趋于0,故分子必趋于0,于是有
lim(x->0) [1+x+f(x)/x)]=1

lim(x->0) f(x)/x=0
同样道理,分母趋于0,则分子必趋于0,于是有f(0)=0
利用罗比塔法则:
0=lim(x->0) f(x)/x=lim(x->0) f'(x)/1
得f'(0)=0
再利用罗比塔法则:
3=lim(x->0) ln[(1+x+f(x)/x)]/x=lim(x->0) 1/[(1+x+f(x)/x)]*{1+[f'(x)*x-f(x)]/x^2}/1=
lim(x->0) 1/[(1+0+0)]*{1+[f'(x)*x-f(x)]/x^2}/1
故有
2=lim(x->0) [f'(x)*x-f(x)]/x^2 (下面利用罗比塔法则)
=lim(x->0) [f''(x)*x+f'(x)-f'(x)]/(2x)
=lim(x->0) f''(x)*x/(2x)
=lim(x->0) f''(x)/2
故有f''(0)=4
(2)lim(x->0) (1+f(x)/x)^(1/x)=e^ lim(x->0) ln[1+f(x)/x]/x (下面利用罗比塔法则)
=e^ lim(x->0) 1/[1+f(x)/x]*[xf'(x)-f(x)]/x^2 (下面利用罗比塔法则)
=e^ lim(x->0) 1/[1+0]*[f'(x)+xf''(x)-f'(x)]/(2x) (x消掉)
=e^ lim(x->0) f''(x)/2
=e^(4/2)
=e^2
不明白请追问.
再问: 我还没学洛必达法则