四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线OB折叠 四边形OABC是矩形
来源:学生作业帮 编辑:拍题作业网作业帮 分类:数学作业 时间:2024/11/01 06:50:12
四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线OB折叠 四边形OABC是矩形
四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线OB折叠 四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线OB折叠.使点A落在D处,BD交OC于E. 【1】求OE的长 【2】求过O,C,D三点抛物线的解析式 【3】若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t秒为何值时,直线PF把△FOB分成面积之比为1:3的两部分?
四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线OB折叠 四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线OB折叠.使点A落在D处,BD交OC于E. 【1】求OE的长 【2】求过O,C,D三点抛物线的解析式 【3】若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t秒为何值时,直线PF把△FOB分成面积之比为1:3的两部分?
(1)、由题可求OB=(√80),∠OBD=∠OBA=∠BOC,所以△OEB为等腰三角形且OE=BE;
作EG垂直OB于G,则EG是等腰△OEB的中垂线,且可得直角△OEG与直角△OBC相似
所以OG/OC=OE/OB,即((√80)/2)/8=OE/(√80),可得OE=5 (A)
(2)、由(A)知OE=5,所以DE^2+OD^2=OE^2,可求DE=3;
作DM垂直OE于M,则直角△DOE与直角△MOD相似
所以DM/OD=DE/OE,即DM/4=3/5,求得DM=12/5;
所以OM/OD=OD/OE,即OM/4=4/5,求得OM=16/5;
即D点的坐标是(16/5,12/5)
设过O,C,D三点抛物线的解析式为y=ax^2+bx+c
对O点,x=0时y=0,所以c=0
对C点,x=8时y=0,所以64a+8b=0
对D点,x=16/5时y=12/5,所以((16/5)^2)a+16b/5=12/5
可求a=-5/32,b=5/4 (B)
所以所求解析式为 y= -(5/32)x^2+(5/4)x
(3)因为F为顶点,结合(B),可知F的坐标为(-b/2a,-b²/4a)=(4,5/2)
结合(B),当取x=OC/2时
在OB上取点K,令3OK=KB,连接KF,则KF刚好把△FOB分成面积之比为1:3的两部分(高相同),延长FK与AB相交J,则交点即为P运行了t秒的位置.
作KS垂直OC于S,直角△OKS与直角△OBC相似,OS/OC=OK/OB=OK/(OK+3OK)=1/4=OS/4
,得OS=1
,KS/BC=OS/OC=KS/4=1/8,得KS=1/2
所以K点坐标为(1,1/2);
可求直线FK的解析式为y=(2x/3)-1/6
而直线AB的解析式为y=4;
所以,FK与AB的交点可求,为(25/4,4)
t*1=25/4,即t=25/4
作EG垂直OB于G,则EG是等腰△OEB的中垂线,且可得直角△OEG与直角△OBC相似
所以OG/OC=OE/OB,即((√80)/2)/8=OE/(√80),可得OE=5 (A)
(2)、由(A)知OE=5,所以DE^2+OD^2=OE^2,可求DE=3;
作DM垂直OE于M,则直角△DOE与直角△MOD相似
所以DM/OD=DE/OE,即DM/4=3/5,求得DM=12/5;
所以OM/OD=OD/OE,即OM/4=4/5,求得OM=16/5;
即D点的坐标是(16/5,12/5)
设过O,C,D三点抛物线的解析式为y=ax^2+bx+c
对O点,x=0时y=0,所以c=0
对C点,x=8时y=0,所以64a+8b=0
对D点,x=16/5时y=12/5,所以((16/5)^2)a+16b/5=12/5
可求a=-5/32,b=5/4 (B)
所以所求解析式为 y= -(5/32)x^2+(5/4)x
(3)因为F为顶点,结合(B),可知F的坐标为(-b/2a,-b²/4a)=(4,5/2)
结合(B),当取x=OC/2时
在OB上取点K,令3OK=KB,连接KF,则KF刚好把△FOB分成面积之比为1:3的两部分(高相同),延长FK与AB相交J,则交点即为P运行了t秒的位置.
作KS垂直OC于S,直角△OKS与直角△OBC相似,OS/OC=OK/OB=OK/(OK+3OK)=1/4=OS/4
,得OS=1
,KS/BC=OS/OC=KS/4=1/8,得KS=1/2
所以K点坐标为(1,1/2);
可求直线FK的解析式为y=(2x/3)-1/6
而直线AB的解析式为y=4;
所以,FK与AB的交点可求,为(25/4,4)
t*1=25/4,即t=25/4
四边形OABC是矩形,OA=2,OC=4,将矩形OABC沿直线AC折叠.使点B落在D处,AD交OC于E.
已知空间四边形OABC中,OA=OC,BA=BC,点E,F,G,H分别为OA,AB,BC,CO的中点求证EFGH是矩形.
如图,在平面直角坐标系中,四边形OABC为矩形,OA=3,OC=4,P为直线AB上一动点,将直线OP绕点P逆时针方向
如图9,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形.OA=6 OC=4 P在Bc上
在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的E处,分别以OC、OA
把一个矩形纸片OABC放在平面直角坐标系中,使OA、OC分别落在X、Y轴上,连接0B,将纸片沿OB折叠,
如图.把矩形纸片OABC 放入平面直角坐标系中,使OA、OC分别落在x轴、y轴,连接OB,将纸片OABC沿OB折叠,使
如图,把一矩形纸片OABC放入平面直角坐标系中,使OA,OC分别落在X轴,Y轴上,连接OB,将纸片OABC沿OB折叠,使
如图,把矩形纸片OABC放如平面直角坐标系中,使OA,OC分别落在X轴,Y轴上,连结OB,将纸片OABC沿OB折叠,使A
如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,
把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在X轴Y轴上,连接OB,将纸片OABC沿OB折叠使点A落在A`
平面坐标系中,O为原点,四边形OABC为矩形,A(0,4),C(5,0),D是Y轴正半轴上一点,四边形OABC沿