作业帮 > 数学 > 作业

椭圆x ^ 2/16+y ^ 2/4=1上有两点P,Q,O为坐标原点,连结OP,OQ,若Kop*kOQ=-1/4,

来源:学生作业帮 编辑:拍题作业网作业帮 分类:数学作业 时间:2024/05/26 14:00:18
椭圆x ^ 2/16+y ^ 2/4=1上有两点P,Q,O为坐标原点,连结OP,OQ,若Kop*kOQ=-1/4,
1、求椭圆的参数方程
3、求线段PQ中点M的轨迹方程
参数方程为:x=4cost,y=2sint(t为参数)
设直线PQ方程为:y=kx+m,交点(x1,y1)(x2,y2)
联立,则:(1+4k^2)x^2+8kmx+4m^2-16=0
kop*koq=-1/4=y1y2/x1x2=(kx1+m)(kx2+m)/x1x2
4[k^2x1x2+km(x1+x2)+m^2]+x1x2=0
代入韦达定理,则m^2=2+8k^2
中点(-4km/(1+4k^2),k*(-4km/(1+4k^2))+m)
由关系式,消参,得到中点坐标的关系即为轨迹方程.
我现在有事,等忙完了再消参,你也可以自己消一下.