设四面体ABCD的棱长为a,P是棱AB上的任意一点,且P到面ACD,BCD的距离为d1,d2,则d1+d2=?
已知P为抛物线y2=4x上一点,设P到准线的距离为d1,P到点A(1,4)的距离为d2,则d1+d2的最小值是
已知P是正四面体S-ABC表面SAB内任意一点,P到点S的距离为d1,P到直线AB的距离为d2,P到面ABC的距离为d3
已知p为抛物线y^2=4x上一点,设p到准线的距离为d1,p到点a(1,4)的距离为d2,则d1+d2的最小值为?
已知点P是抛物线y2=4x上一点,设点P到此抛物线准线的距离为d1,到直线x+2y+10=0的距离为d2,则d1+d2的
已知点P是抛物线y2=4x上一点,设点P到此抛物线准线的距离为d1,到直线x+2y+10=0的距离为d2,则d1+d2的
四面体ABCD各顶点到所对平面的距离是d1,d2,d3,d4,内切球半径为r,求证:d1+d2+d3+d4>=16r
已知点P是抛物线Y=(1/4)X(2)+1上的任意一点,记点P到X轴的距离为d1,P与点F(0,2)的距离为d2.
设定点M(3,103)与抛物线y2=2x上的点P的距离为d1,P到抛物线准线l的距离为d2,则d1+d2取最小值时,P点
抛物线y^2=4x上一点P到准线的距离为d1,到直线x+2y-12=0的距离为d2,求d1+d2的最小值,
设⊙O为正三角形ABC的内切圆,E F是AB AC上的切点,劣弧EF上任一点P到BC CA AB的距离分别为d1,d2,
(2014•丹徒区模拟)抛物线y=14x2上有一个动点P到x轴的距离为d1,到直线y=-x-4的距离为d2,则d1+d2
在直角坐标系中,点P到点F(2,0)的距离为d1,到y轴的距离为d2,若d1=d2+1,则点P的轨迹方程为