∫∫上半球面 取下侧 曲线积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/03/29 16:45:26
计算曲线积分I=∫(X^2-y)dx-(x+cos^2y)dy,其中是L在上半圆周y=√((x-x^2)由点(0,0)到

令P=x^2-y,Q=-x-(cosy)^2∵αP/αy=αQ/αx=-1∴由格林定理知,此曲线积分与路径无关,只与始点和终点有关于是,计算此积分取路径为:y=0,0≤x≤1故I=∫x^2dx=1/3

曲线积分:∫(y+xe^2y)dx+(x^2*e^2y+1)dy,其中L是从点(0,0)到点(4,0)的上半圆周

P=y+xe^2y,Q=x^2*e^2y+1aP/ay=1+2xe^2yaQ/ax=2xe^2y作辅助线AO:y=0,x:4->0原式=∫L+AO-∫AO=∫∫1dxdy-∫(4,0)xdx=1/2π

求线性积分I=∫(x-y)dx/(x^2+y^2)+(x+y)dy(x^2+y^2),积分曲线c从点A(-a,0)经上半

可以知道在单连通区域{(x,y)|y>=0}满足Q=(x-y)/(x^2+y^2)对x的偏导数等于P=(x+y)/(x^2+y^2)对y的偏导数,故曲线积分与路径无关,原式等于被积表达式沿x^2+y^

曲线积分问题.求∫根号下(2y²+z²)ds,其中积分曲线c为封闭曲线x²+y²

积分曲线就是一个大圆的圆周为了清楚我用图片写给你了,要被审核一会(请稍等几分钟,或者直接hi我)再问:麻烦你在看看这道题好么求∫x²ds,其中c为x²+y²+z²

求下列第一型曲线积分 ∫L√(2y^2+z^2)ds,其中L为球面x^2+y^2+z^2=a^2与平面x=y的交线.

你的答案是正确的,书上给的答案错误.在计算∫Lds时应当用曲线的周长,所以你给出球大圆的周长是正确的.而书上说的椭圆2y^2+z^2=a^2其实是那个球大圆投影到XOY面后的椭圆,这个显然不是题中的曲

计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2)

dz/dx=-x/√(4-x²-y²),dz/dy=-y/√(4-x²-y²)dS=√[1+(dz/dx)²+(dz/dy)²]dxdy=2

求下列第一型曲线积分 ∫L|y|ds,其中L为球面x^2+y^2+z^2=2与平面x=y的交线

x²+y²+z²=2x=y∴2x²+z²=2所以L的参数方程为:x=y=cosθ,z=√2sinθ,0≤θ≤2πds=√(x'²+y'

球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分

∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5

高数题,曲线积分若曲线L为球面x2+y2+z2=a2被平面x+y+z=0所截得的圆周,则第一类曲线积分∫L(x2+y2+

因为曲线L位于圆周上,所以x2+y2+z2=a2故∫L(x2+y2+z2)ds=a2∫Lds=a^2*2PI*a=2PI*a^3

计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧

在半球面∑上添加圆面S:(x²+y²=1,z=0),使之构成封闭曲面V=∑+S.∵∫∫x³dydz+y³dzdx+z³dxdy=0(∵z=0,∴dz=

算球面积我用积分法求球面积时S=∫2π*(R^2-x^2)^0.5*dx=2π^2R^2,不等于4πR^2啊,我错在哪里

其实可以是可以的不过你的积分变量选择错了我们不妨用参数方程来讨论这道题目x=rcosty=rsint你的想法是可以理解的,因为以前我也试过这么做,就是用无数个圆周去拟合一个圆面,但是,这个拟合过程容易

积分∫c|z|dz的值,积分路线分别为-1与1且中心在原点的上半个圆周.-1与1...

不管上半圆周还是下半圆周,曲线方程都是|z|=1将|z|=1代入积分,可得积分的被积函数为1,这样积分结果应该是曲线弧长,由于上半圆周是顺时针的,因此要加个负号,下半圆周是逆时针的(正方向)因此第一小

球面x^2+y^2+z^2=9,求曲面积分∫(闭合)x^2ds

球面x^2+y^2+z^2=9∫(闭合)x^2ds=(1/3)∮3x^2ds因为积分曲面为球面,根据对称性有,∮x^2ds=∮y^2ds=∮z^2ds=(1/3)∮(x^2+y^2+z^2)ds因为是

设曲线积分∫

由题意,P=x4+4xyk,Q=6xk-1y2-5y4要使曲线积分与积分路径无关,则必有∂P∂y=∂Q∂x即4kxyk-1=6(k-1)xk-2y2∴4k=6(k−1)1=k−2k−1=2∴k=3

计算曲线积分I=∫

由题意,取点D(2,1),连接线段BD和DA补充,得I=AO+0B+BD+DA(12xy+ey)dx−(cosy−xey)dy-BD+DA(12xy+ey)dx−(cosy−xey)dy=∫∫D(−1

我想求教下这张卷子的简答题的2,3题.就是证明曲线积分和积分路径无关以及把三重积分转化为球面坐标下的三次积分的那两道题

第2题就是积分与路径无关的条件,计算时可进行简化第3题,可直接化为三次积分再答:再答:这个就直接写吧,你画个图看看再答:再问:好的,谢谢

数学曲线积分 求i=∫y²ds, 其中c是球面x²+y²+z²=r²与

由于曲线关于x,y,z具有轮换对称性,因此有:∫y²ds=∫x²ds=∫z²ds则∫y²ds=(1/3)∫(x²+y²+z²)ds