设A为n阶方阵,且R(A)=n-1,a1,a2是AX=0的两个不同解

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/30 05:28:13
设A为n阶方阵,证:R(A的n次方)=R(A的n+1次方)(n为自然数)

证明A^(n+1)·x=0和A^n·x=0同如果A非奇异则显然成立,否则利用n-1>=rank(A)>=rank(A^2)>=...>=rank(A^n)>=rank(A^(n+1))>=0中间一定有

设A为n阶方阵,B为N×S矩阵,且r(B)=n.证明若AB=0则A=0

若AB=0,则说明B的列向量都是AX=0的解因为r(B)=n,所以AX=0至少有n个线性无关的解设解集为S,则r(S)=n-r(A)>=n即r(A)=0所以r(A)=0即A=0

线性代数 设A为n阶方阵,且A方=E,则R(A)=?

R(A)=n简单的看,有个公式R(AB)=R(A方)=n所以R(A)=n

线性代数中秩的证明设A为n阶方阵,且A^2=A,若R(A)=r,证明:R(A-E)=n-r..其中E为n阶单位阵

由A^2=A,得A^2-A=0,(A-E)A=0.两n阶矩阵乘积为零矩阵,则两矩阵秩之和不大于n,故由(A-E)A=0得,R(A-E)+R(A)≤n.两矩阵之和的秩不小于两矩阵秩之和,故由(E-A)+

设A为n阶方阵,且A2=A,则R(A)+ R(A- E) =

求法很多,用一种最简单的:根据秩的不等式:R(A)+R(A-E)-n≤R[A(A-E)]=R(A^2-A)又因为:A^2=A,即A^2-A=0(零阵)因此:R(A)+R(A-E)-n≤R[A(A-E)

设A,B为n阶方阵,且AB=0,证明:R(A)+R(B)小于等于n

因为AB=0所以B的列向量都是AX=0的解.所以B的列向量组可以由AX=0的基础解系线性表示所以r(B)

设A为n阶方阵,AA=A ,证明R(A)+R(A-E)=n

(1)A^2=A,所以A(A-E)=0所以r(A)+r(A-E)=r(A+E-A)=r(E)=n所以r(A)+r(A-E)=n再问:R(A)+R(B)>=R(A+B)这怎么得来的?再答:A的所有列向量

(线性代数)设A,B为n阶方阵,证明:r(AB)>=r(A)+r(B)-n

证明:AB与n阶单位矩阵En构造分块矩阵|ABO||OEn|A分乘下面两块矩阵加到上面两块矩阵,有|ABA||0En|右边两块矩阵分乘-B加到左边两块矩阵,有|0A||-BEn|所以,r(AB)+n=

设A,B是n阶方阵,且r(A)=r(B),则

选项A,B,C是瞎扯,没这结论r(A+B)≤r(A)+r(B)正确,但与已知r(A)=r(B)没关系.怪怪的

设A为n阶方阵,A不等于I,且满足r(A-I) r(A-3I)=n,证明x=3是的A特征值.

(A-I)r(A-3I)=n是加号连接吧即r(A-I)+r(A-3I)=n因为A≠I,所以A-I≠0,所以r(A-I)>=1所以r(A-3I)

设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n,

证明:设A,B为同阶方阵,a1,a2...ar是A的极大线性无关向量组,则:R(A)=r,同理,设b1,b2,..bs为B的极大线性无关向量组,则:R(B)=s而A+B与A和B为同阶方阵,其极大线性无

设A,B为n阶方阵,且r(A)+r(B)

设r(A)=p则存在矩阵P1,Q1使得P1AQ1=C1(C1只有前p行,前p列不为0)则A=P1^-1C1Q1^-1设r(B)=q则存在矩阵P2,Q2使得P2BQ2=C2(C2只有后q行,后q列不为0

设A为n阶方阵,且A^2-A=2I,证明:R(2I-A)+R(I+A)=n

由A²-A=2I得A²-A-2I=0(A-2I)(A+I)=0所以R(A-2I)+R(A+I)≤n又R(A-2I)=R(2I-A)故R(2I-A)+R(A+I)≤n又R(2I-A)

设A为n阶方阵,且A^2=A+2I,证明r(A-2I)+r(A+I)=n

第一个“→”的变换是指:把第一行乘以"I"加到第二行第二个“→”的变换是指:把第二列乘以"-I"加到第一列第三个“→”的变换是指:把第二行乘以"1/3(A-2I)"加到第一行第四个“→”的变换是指:把

设A,B均为n阶方阵,且AB=0,证明r(A)=n-1时,r(A*)=1

AA*=|A|Er(A)=n-1,说明|A|=0因此AA*=0于A*的列向量为齐次方程AX=0的解向量从而r(A*)=1总之r(A*)=1

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

问一道线性代数题目设A,B均为n阶方阵,且r(A)

解 : 为了方便,这里只举由一个方程构成的方程组为例子: 方程组 x1+x2+x3=0 的基础解系为 (-1,1,0)^T,(-1,0,1)

设A为n阶方阵,且A*A=A,证明R(A)+R(A-E)=n.

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立