设A,B是n级方阵,若A有n个不同的特征值且AB=BA,证明:A,B可同时对角化

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/07 01:19:17
设C是nxm矩阵,A是n阶方阵,B是m阶方阵,AC=CB

CB^n=ACB^(n-1)=...=A^n*B所以任何多项式F有CF(B)=F(A)C所以任何R事B的特征值X属于B的R-根子空间,则存在n有(R-B)^nX=0则(R-A)^nCX=C(R-B)^

线性代数问题设A=(aij)n*n的秩为r,则在A的n个行向量中(A)A.必有r个线性无关。为什么?设A是n阶非零方阵,

A的秩为r,说明A的行向量和列向量的秩为r,所以行向量中必有r个向量线性无关.第二题,事实上,A与B绝对有一个是错误的,所以可以得到C与D是正确的,可以利用C的结论,0是A的n重特征值,而AX=0的解

设A是N阶方阵,若存在N阶方阵B不等于零,使AB=0(矩阵),证明R(A)

用反证法.若R(A)=N,则A可逆.A^(-1)[AB]=A^(-1)*0=0,又A^(-1)[AB]=B,因此,B=0.与B不等于0矛盾.故,R(A)

设A,B是n阶方阵,满足AB=A-B,证明AB=BA

AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA

设A,B是n阶方阵,且r(A)=r(B),则

选项A,B,C是瞎扯,没这结论r(A+B)≤r(A)+r(B)正确,但与已知r(A)=r(B)没关系.怪怪的

设a是n阶方阵,若|A|=0,则A有一行元素全为零,

不对,比如a=1122a的行列式就等于0

设A是n阶方阵,若存在n阶方阵B不等于0,使AB=0,证明R(A)小于n.

因为B≠O(矩阵),所以存在B的一列b≠0(列向量)因为AB=0,所以Ab=0即齐次线性方程组AX=0存在非零解,所以R(A)

一道线性代数的题目设a,b是n维列向量,a' =0,n阶方阵A=E+ab',n>=3,则在A的n个特征值中,必然____

这里,先给说一个结论,很好证的就是如果x是阵C的特征值,那么E+C的特征值为1+xa'b≠0,可以知道ab'也不会为0,而r(ab')

设A,B是n阶方阵 P,Q是n阶可逆矩阵

给你例子看看A=[1,0;0,0],B=[0,0;0,1]则因为r(A)=r(B)=1,所以A与B等价.但它们的行向量组,列向量组都不等价A的行向量组是(1,0),(0,0)B的行向量组是(0,0),

设A是n阶方阵,若存在n阶非零方阵B,使得AB=BA=B,则A=E.为什么是错的?

因为矩阵B不一定可逆,如果B可逆,则由AB=B两边左乘B^(-1)就得到A=E,但是现在不知道B是否可逆,只能得到AB-B=O,即(A-E)B=O,而我们知道如果AB=O,不一定有A=O或B=O成立,

设A是n阶方阵,A有n个不同的特征值是A与对角相似的?条件...

填入:充分若A有n个不同的特征值,则A与对角相似.但逆不成立.

证明:设A是一个n阶方阵,如果对任一个n维向量x,都有Ax=0,那么A=0

证法一由于有关系式(A的秩)+(Ax=0的解空间维数)=n现在依照题意,Ax=0的解空间是整个空间,即(Ax=0的解空间维数)=n所以A的秩是零,因此A=0证法二(反证)设A≠0,则A的某个元素a(i

设A是N阶方阵,若存在N阶方阵B不等于零,使AB=0,证明R(A)《N

假设R(A)=N那么A为满秩矩阵,那么A可逆,A*A的逆矩阵*B=0,所以B=0,与条件矛盾.所以R(A)〈N

设n阶方阵A的n个特征值互异,n阶方阵B与A有相同的特征值,证明:A与B是相似的?

因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性

设A是n阶方阵,当条件( ) 成立时,n元线性方程组AX=b有唯一解

设B=(A,b)也就是把b这一列添加到矩阵A的右侧形成一个新的矩阵B,如果B的秩等于矩阵A的秩,那么方程组有唯一解,答案可以写成r(A,b)=r(A)

设A B都是n阶正交方阵,证明:

A是正交矩阵的充分必要条件是A'A=EAA'=EA^(-1)=A'.由A,B是正交矩阵,所以A'A=E,B'B=E,等等.所以有[A^(-1)]'A^(-1)=(A')'A'=AA'=E,所以A^(-

设A、B是n阶方阵,则必有|A'B|=|BA|,为什么?

知识点:1.|A'|=|A|2.|AB|=|A||B|所以有|A'B|=|A'||B|=|A||B|=|B||A|=|BA|

设a,b均为n阶方阵,则必有

这是个定理或性质.它的证明比较繁琐,若学过Laplace展开还好一点.记住这个结论就行了,不必深究它的证明!