若a是一个n阶方阵且方程组ax=0有非0解,则

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/28 14:40:10
设A是n阶方阵,且A2=A,证明A+E可逆

由A^2=A知道A的特征值只能是1和0若|A+E|=0,则-1是其特征值,这不可能所以|A+E|≠0,即可逆

设A为n阶方阵,且秩R(A)=n-1,a1,a2是非齐次方程组 AX=b的两个不同的解向量,则AX=0的通解为

因为R(A)=n-1所以AX=0的基础解系含n-r(A)=1个解向量所以AX=0的通解为k(a1-a2).

设A是n阶方阵,证明齐次线性方程组AX=0与(A^T)AX=O是同解方程组.

A是实方阵吧.证明:记A'=A^T(1)设X1是AX=0的解,则AX1=0所以A'AX1=A'(AX1)=A'0=0所以X1是A'AX=0的解.故Ax=0的解是A'AX=0的解.(2)设X2是A'AX

设A是N阶方阵,若A2=A,且A不等于E,证A不是可逆矩阵

反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾

设A为n阶方阵,且R(A)=n-1,a1,a2是AX=0的两个不同的解向量,则AX=0的通解为?A.ka1

(A)=n-1说明解空间的秩为1所以找一个非零解就行.显然a1-a2是一个非零解.所以通解为C(a1-a2)

设A为n阶方阵,且R(A)=n-1,a1,a2是AX=0的两个不同的解向量,则AX=0的通解为?

(1)因为r(A)=2,所以AX=0的基础解系含5-r(A)=3个解向量所以AX=0的3个线性无关的解都是其基础解系所以(2),(3)正确.(4)线性相关:(a1-a2)+(a2-a3)+(a3-a1

设n阶方阵A的行列式等于0,且有某个代数余子式A(ij)不等于0,证明:方程组AX=0的一般解为

证明:因为|A|=0所以AA*=|A|E=0所以A*的列向量都是AX=0的解.又因为|A|=0所以r(A)=1,所以r(A)>=n-1所以r(A)=n-1.所以AX=0的基础解系含n-r(A)=1个解

设A为n阶方阵,方程组Ax=b对有些n维向量b有解,对有些n维向量b无解,则()

(C)正确其余3个选项都是说A可逆当A可逆时,对任一b,AX=b都有唯一解,与题意不符

设 A为 N阶方阵,方程组AX=0 有非零解,则 A必有一个特征值为 ____ .

∵AX=0有非零解∴存在ε≠0,使Aε=0=0ε即A有特征值0

设A为n阶方阵,且Ax=0有非零解,则A必有一个特征值为( ).原因是啥.

再答:�����������⣬ϣ�����ܲ��ɣ�лл��再问:û���װ�������再答:����Ӧ���и����壺���������ʽֵ��������ֵ�Ļ�再问:���ˡ�Ҫ���ڰ��

证明:设A是一个n阶方阵,如果对任一个n维向量x,都有Ax=0,那么A=0

证法一由于有关系式(A的秩)+(Ax=0的解空间维数)=n现在依照题意,Ax=0的解空间是整个空间,即(Ax=0的解空间维数)=n所以A的秩是零,因此A=0证法二(反证)设A≠0,则A的某个元素a(i

设A是n阶方阵,且A的平方等于A,证明A+E可逆

假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾

设A是n阶方阵,且|5A+3E|=0.则A必有一个特征值为

因为|5A+3E|=0,所以|A-(-3/5)E|=0,从而-3/5是A的一个特征值.

AX=0对于矩阵A,A是一个n阶方阵,r(A)=n-1,A的每一行元素加起来均为1,求AX=0的基础解系

A是一个n阶方阵,r(A)=n-1所以AX=0的基础解系的解向量的个数为1又A的每一行元素加起来均为1则A(1,1,...,1)^T=(1,1,...,1)^T所以x=(1,1,...,1)^T是AX

一道线性代数的考研题 设A=(α1,α2,α3,α4)是4阶方阵,若(1,0,1,0)T 是方程组Ax=0的一个基础解系

先看条件Ax=0的一个基础解系是[1,0,1,0]^T这说明1)x_1=[1,0,1,0]^T是Ax=0的一个解2)Ax=0的解空间是一维的,同时得到rank(A)=33)0=A*[1,0,1,0]^

设A为n阶方阵,且r(A)=n-1,α1,α2是AX=0的两个不同的解向量,则方程组AX=0的通解为

选C.由于r(A)=n-1,因此解是一维的.因为α1、α2是两个不同的解向量,因此α1-α2≠0向量,可作为基底,所以通解为k(α1-α2).A、B、D都有可能是0向量,故不能作基.

A是n阶矩阵,证明:A可逆当且仅当对任意n维向量β,方程组Ax=β有解

首先要有这个概念:方程组Ax=β有解当且仅当β可由A的列向量组线性表示.若这个结论没问题,就可以这样证明充分性因为对任意n维向量β,方程组Ax=β有解所以任一n维向量都可由A的列向量组线性表示特别地,

设A为n阶方阵,Ax=0有非零解,则A必有一个特征值?

必有一个特征值为零Ax=0有非零解表明A的秩